

COMBIVERT F6

INSTRUCTIONS FOR USE | INSTALLATION F6 HOUSING 8

Translation of the original manual Document 20120983 EN 03

- PRE-SERIES -

Preface

The hardware and software described in this document are products of KEB. The information contained in this document is valid at the time of publishing. KEB reserves the right to update this document in response to misprints, mistakes or technical changes.

Signal words and symbols

Certain procedures within this document can cause safety hazards during the installation or operation of the device. Refer to the safety warnings in this document when performing these procedures. Safety signs are also located on the device where applicable. A safety warning is marked by one of the following warning signs:

A DANGER

Dangerous situation, which will cause death or serious injury iif this safety warning is ignored.

WARNING

Dangerous situation, which may cause death or serious injury if this safety warning is ignored.

A CAUTION

Dangerous situation, which may cause minor injury if this safety warning is ignored.

NOTICE

Situation, which can cause damage to property if this safety warning is ignored.

RESTRICTION

Used when the following statements depend on certain conditions or are only valid for certain ranges of values.

Used for informational messages or recommended procedures.

More symbols

- This arrow starts an action step.
- / Enumerations are marked with dots or indents.
- => Cross reference to another chapter or another page.

Note to further documentation. www.keb.de/service/downloads

Laws and guidelines

KEB Automation KG confirms with the EC declaration of conformity and the CE mark on the device nameplate that it complies with the essential safety requirements.

The EC declaration of conformity can be downloaded on demand via our website. Further information is provided in chapter "Certification".

Warranty and liability

The warranty and liability on design, material or workmanship for the acquired device is given in the general sales conditions.

Here you will find our general sales conditions. www.keb.de/terms-and-conditions

Further agreements or specifications require a written confirmation.

Support

Although multiple applications are referenced, not every case has been taking into account. If you require further information or if problems occur which are not referenced in the documentation, you can request the necessary information via the local KEB agency.

The use of our units in the target products is outside of our control and therefore lies exclusively in the area of responsibility of the customer.

The information contained in the technical documentation, as well as any user-specific advice in spoken and written and through tests, are made to best of our knowledge and information about the intended use. However, they are regarded as being only informal and changes are expressly reserved, in particular due to technical changes. This also applies to any violation of industrial property rights of a third-party. Selection of our units in view of their suitability for the intended use must be done generally by the user.

Tests can only be done within the intended end use of the product (application) by the customer. They must be repeated, even if only parts of hardware, software or the unit adjustment are modified.

Copyright

The customer may use the instructions for use as well as further documents or parts from it for internal purposes. Copyrights are with KEB and remain valid in its entirety.

This KEB product or parts thereof may contain third-party software, including free and/ or open source software. If applicable, the license terms of this software are contained in the instructions for use. The instructions for use are already available to you, can be downloaded free of charge from the KEB website or can be requested from the respective KEB contact person.

Other wordmarks or/and logos are trademarks ($^{\text{TM}}$) or registered trademarks ($^{\text{R}}$) of their respective owners.

Table of Contents

	Preface	3
	Signal words and symbols	3
	More symbols	3
	Laws and guidelines	4
	Warranty and liability	4
	Support	4
	Copyright	
	Table of Contents	
	List of Figures	
	List of Tables	
	Glossary	
	Standards for drive converters/control cabinets	
	Product standards that apply directly to the drive converter	
	Basic standards to which drive converter standards refer directly	
	Standards that are used in the environment of the drive converter	13
1	Racio Safaty Instructions	<i>A A</i>
1		
	1.1 Target group	
	1.2 Transport, storage and proper use	
	1.3 Installation	
	1.4 Electrical connection	
	1.4.1 EMC-compatible installation	
	1.4.2 Voltage test	
	1.4.3 Insulation measurement	
	1.5 Start-up and operation	
	1.6 Maintenance	_
	1.8 Repair	
	Diaposui	2U
2	Product Description	21
•	2.1 Specified application	
	2.1.1 Residual risks	
	2.2 Unintended use	
	2.3 Product features	
	2.4 Part code	
	2.5 Nameplate	
	2.5.1 Configurable options	
3	Technical Data	27
	3.1 Operating conditions	
	3.1.1 Climatic environmental conditions	
	3.1.2 Mechanical environmental conditions	

TABLE OF CONTENTS

	3.1.3 Chemical / mechanical active substances	28
	3.1.4 Electrical operating conditions	29
	3.1.4.1 Device classification	29
	3.1.4.2 Electromagnetic compatibility	29
	3.2 Device data of the 400 V devices	30
	3.2.1 Overview of the 400 V devices	30
	3.2.2 Voltage and frequencies for 400V devices	31
	3.2.2.1 Example of the calculation of the possible motor voltage:	32
	3.2.3 Input and output currents / overload	32
	3.2.3.1 Overload characteristic (OL)	33
	3.2.3.2 Frequency-dependent maximum current (OL2)	35
	3.2.4 Power dissipation at rated operation	41
	3.2.5 Fuse protection of the drive controller	42
	3.3 General electrical data	43
	3.3.1 Switching frequency and temperature	43
	3.3.1.1 Switching frequencies and temperatures for air coolers	43
	3.3.1.2 Switching frequencies and temperatures for fluid coolers (water)	43
	3.3.2 DC link / braking transistor function	44
	3.3.3 Sub-mounted braking resistors	45
	3.3.4 Fan	46
	3.3.4.1 Switching behaviour of the fans	46
	3.3.4.2 Switching points of the fans	47
	3.3.4.3 Airflow of the drive converter	47
	3.4 Dimensions and weights	48
	3.4.1 Built-in version air cooler	48
	3.4.2 Built-in version fluid cooler (water)	49
	3.4.3 Push-through version air cooler IP20, IP54-ready	50
	3.4.4 Push-through version fluid cooler (water) IP20, IP54-ready	51
	3.4.5 Installation of IP54-ready devices	52
	3.4.6 Control cabinet installation	53
	3.4.6.1 Devices with foot bracket	53
	3.4.6.2 Mounting instructions	54
	3.4.6.3 Mounting distances	55
	Installation and Compaction	- 7
ŀ	Installation and Connection	
	4.1 Overview of the COMBIVERT F6	
	4.2 Connection of the power unit	
	4.2.1 Connection of the voltage supply	
	4.2.1.1 Terminal block X1A for 400 V devices	
	4.2.2 Protective earth and functional earth	
	4.2.2.1 Protective earth	
	4.2.2.2 Functional earthing	
	4.2.3 AC mains connection	63

6	Revision History	79
	5.3 Further informations and documentation	78
	5.2 UL certification	
	5.1 CE-Marking	76
5	Certification	76
	4.3.4 Side-mounted braking resistors	75
	4.3.3 Connections to the coolant	
	4.3.2 Seal for IP54-ready devices	
	4.3.1 Filters and chokes	75
	4.3 Accessories	75
	4.2.7 External heat sink fan supply (FAN)	74
	4.2.6.3 Use of non-intrinsically safe braking resistors	
	4.2.6.2 Terminal block X1A connection braking resistor	
	4.2.6.1 Installation instructions for side-mounted braking resistors	
	4.2.6 Connection and use of a braking resistor	
	4.2.5.8 Connection of the temperature monitoring and brake control (X1C)	
	4.2.5.7 Interconnection of the motor.	
	4.2.5.6 Motor cable cross-section	
	4.2.5.5 Motor cable length for parallel operation of motors	
	4.2.5.4 Motor cable length and conducted interferences at AC supply	
	4.2.5.3 Selection of the motor line	
	4.2.5.2 Terminal block X1A motor connection	
	4.2.5.1 Wiring of the motor	
	4.2.4.1 Terminal block X1A DC connection	
	4.2.4 DC connection	
	4.2.3.2 Mains supply cable	
	4.2.3.1 AC supply 3-phase	
	1 2 3 1 ΔC cunnly 3-nhace	6.3

LIST OF FIGURES

List of Figures

Figure 1:	Nameplate	25
Figure 2:	Configurable options	26
Figure 3:	Switch-off time t depending on the overload I/IN at OC level 150%	33
Figure 4:	Switch-off time t depending on the overload I/IN at OC level 180%	34
Figure 5:	Typical overload characteristics in the lower output frequencies (OL2) example device size 29	35
Figure 6:	Block diagram of the energy flow	44
Figure 7:	Fan	46
Figure 8:	Switching behaviour of the fans example heat sink fan	46
Figure 9:	Airflow of the drive converter	47
Figure 10:	Dimensions built-in version air cooler	48
Figure 11:	Dimensions built-in version fluid cooler (water)	49
Figure 12:	Dimensions push-through version air cooler IP20, IP54-ready	50
Figure 13:	Dimensions push-through version fluid cooler (water) IP20, IP54-ready	51
Figure 14:	Installation of IP54-ready devices	52
Figure 15:	Example of an F6 in housing 8 with M10 ring bolts	53
Figure 16:	Example of an F6 housing 7 with foot bracktes	53
Figure 17:	Mounting distances	55
Figure 18:	Control cabinet ventilation	55
Figure 19:	F6 housing 8 top view	57
Figure 20:	F6 housing 8 front view	58
Figure 21:	F6 housing 8 rear view with control board APPLICATION	59
Figure 22:	Input circuit	60
Figure 23:	Terminal block X1A for 400 V devices	61
Figure 24:	Connection for protective earth	62
Figure 25:	Connection of the mains supply 3-phase	63
Figure 26:	Terminal block X1A DC connection	64
Figure 27:	Wiring of the motor	65
Figure 28:	Terminal block X1A motor connection	66
Figure 29:	Symmetrical motor line	67
Figure 30:	Terminal block X1C for control board APPLICATION and COMPACT	69
Figure 31:	Terminal block X1C for control board PRO	69
Figure 32:	Connection of the brake control	70
Figure 33:	Connection of a KTY sensor	70
Figure 34:	Terminal block X1A connection braking resistor	72
Figure 35:	External heat sink fan supply	74

List of Tables

Table 1:	Part code	23
Table 2:	Climatic environmental conditions	27
Table 3:	Mechanical environmental conditions	28
Table 4:	Chemical / mechanical active substances	28
Table 5:	Device classification	29
Table 6:	Electromagnetic compatibility	29
Table 7:	Overview of the 400 V devices	31
Table 8:	Input voltages and frequencies of the 400V devices	31
Table 9:	DC link voltage for 400V devices	31
Table 10:	Output voltages and frequencies of the 400V devices	32
Table 11:	Example of the calculation of the possible motor voltage:	32
Table 12:	Input currents of the 400 V devices	32
Table 13:	Output currents and overload of the 400 V devices	32
Table 14:	Frequency-dependent maximum current for device size 27	36
Table 15:	Frequency-dependent maximum current for device size 28	36
Table 16:	Frequency-dependent maximum current for device size 29	37
Table 17:	Frequency-dependent maximum current for device size 30 (OC level: 150%)	37
Table 18:	Frequency-dependent maximum current for device size 30 (OC level: 180%)	38
Table 19:	Frequency-dependent maximum current for device size 27	39
Table 20:	Frequency-dependent maximum current for device size 28	39
Table 21:	Frequency-dependent maximum current for device size 29	40
Table 22:	Frequency-dependent maximum current for device size 30 (OC level: 150%)	40
Table 23:	Frequency-dependent maximum current for device size 30 (OC level: 180%)	41
Table 24:	Power dissipation of the 400 V devices	41
Table 25:	Fuse protection of the 400 V / 480 V devices	42
Table 26:	Switching frequencies and temperatures for air coolers	43
Table 27:	Switching frequency and temperature for fluid coolers (water)	43
Table 28:	DC link / braking transistor function of the 400 V devices	45
Table 29:	Sub-mounted braking resistors	45
Table 30:	Switching points of the fans	
Table 31:	Mounting instructions for built-in version	54
Table 32:	Mounting instructions for push-through version	54
Table 33:	Max. motor cable length	
Table 34:	Filters and chokes	
Table 35:	Seal for IP54-ready devices	75
Table 36:	Connections to the coolant	75

Glossary

0) /	Earth and a Kalifornia and a sint	F., 1.4	Diding after a law and a state of a second discount
0V	Earth-potential-free common point	Endat	Bidirectional encoder interface of the
1ph	1-phase mains	Eth a mOAT	company Heidenhain
3ph	3-phase mains	EtherCAT	Real-time Ethernet bus system of the
AC	AC current or voltage	Cth a wa at	company Beckhoff
AFE	From 07/2019 AIC replaces the pre-	Ethernet	Real-time bus system - defines pro-
	vious name AFE	 FE	tocols, plugs, types of cables Functional earth
AFE filter	From 07/2019 AIC filter replaces the	FE FSoE	Functional Safety over Ethernet
A10	previous name AFE filter	FU	Drive converter
AIC	Active Infeed Converter	GND	
AIC filter	Filter for Active Infeed Converter	GTR7	Reference potential, ground
Application	The application is the intended use	HF filter	Braking transistor
ASCL	of the KEB product		High frequency filter to the mains Bidirectional encoder interface of the
ASCL	Asynchronous sensorless closed loop	Hiperface	company Sick-Stegmann
Auto motor	Automatically motor identification;	НМІ	Human machine interface (touch
ident.	calibration of resistance and induc-		screen)
	tance	HSP5	Fast, serial protocol
AWG	American wire gauge	HTL	Incremental signal with an output
B2B	Business-to-business		voltage (up to 30V) -> TTL
BiSS	Open source real-time interface for	IEC	International standard
0.434	sensors and actuators (DIN 5008)	IP xx	Degree of protection (xx for level)
CAN	Fieldbus system	KEB product	The KEB product is subject of this
CDF	Cyclic duration factor	1.77.4	manual
CDM	Complete drive module including	KTY	Silicium temperature sensor (pola-
COMPILIEDT	auxiliary equipment (control cabinet) KEB drive converters	Manufacturer	rized)
COMBIVERT COMBIVIS		Manufacturer	The manufacturer is KEB, unless otherwise specified (e.g. as ma-
COMPLAIS	KEB start-up and parameterizing software		nufacturer of machines, engines,
Customer	The customer has purchased a KEB		vehicles or adhesives)
Odstorner	product from KEB and integrates the	мсм	American unit for large wire cross
	KEB product into his product (cus-		sections
	tomer product) or resells the KEB	Modulation	Means in drive technology that the
	product (dealer)		power semiconductors are controlled
DC	DC current or voltage	MTTF	Mean service life to failure
DI	Demineralized water, also referred to	NN	Sea level
	as deionized (DI) water	oc	Overcurrent
DIN	German Institut for standardization	ОН	Overheat
DS 402	CiA DS 402 - CAN device profile for	OL	Overload
	drives	OSSD	Output signal swithching device; - an
EMC	Electromagnetic compatibility		output signal that is checked in regu-
Emergency	Shutdown of a drive in emergency		lar intervals on its shutdown. (safety
stop	case (not de-energized)		technology)
Emergency	Switching off the voltage supply in	PDS	Power drive system incl. motor and
switching off	emergency case	DE	measuring probe
EMS	Energy Management System	PE	Protective earth
EN	European standard	PELV	Protective Extra Low Voltage
Encoder emu- lation	Software-generated encoder output	PFD	Term used in the safety technology (EN 61508-17) for the size of error
End customer	The end customer is the user of the		probability

customer product

PFH Term used in the safety technology (EN 61508-1...7) for the size of error probability per hour **PLC** Programmable logic controller PT100 Temperature sensor with R0=100 Ω Temperature sensor with R0=1000Ω PT1000 PTC PTC-resistor for temperature detection **PWM** Pulse width modulation RJ45 Modular connector with 8 lines Synchronous sensorless closed loop SCL **SELV** Safety Extra Low Voltage (<60 V) The security integrity level is a SIL measure for quantifying the risk reduction. Term used in the safety technology (EN 61508 -1...7) Safety function "Safe stop 1" in ac-SS1 cordance with IEC 61800-5-2 SSI Synchronous serial interface for encoder STO Safety function "Safe Torque Off" in accordance with IEC 61800-5-2 TTL Incremental signal with an output voltage up to 5V **USB** Universal serial bus VARAN Real-time Ethernet bus system

Standards for drive converters/control cabinets

Product standards that apply directly to the drive converter

EN 61800-2	Adjustable speed electrical power drive systems - Part 2: General requirements - Rating specifications for low voltage adjustable frequency a.c. power drive systems (VDE 0160-102, IEC 61800-2)
EN 61800-3	Speed-adjustable electrical drives. Part 3: EMC requirements and specific test methods (VDE 0160-103, IEC 61800-3)
EN 61800-5-1	Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy (IEC 61800-5-1); German version EN 61800-5-1
EN 61800-5-2	Adjustable speed electrical power drive systems - Part 5-2: Safety Requirements - Functional (IEC 22G/264/CD)
UL61800-5-1	American version of the EN61800-5-1 with "National Deviations"

Basic standards to which drive converter standards refer directly

	•
EN 55011	Industrial, scientific and medical equipment - Radio frequency disturbance characteristics - Limits and methods of measurement (CISPR 11); German version EN 55011
EN 55021	Interference to mobile radiocommunications in the presence of impulse noise - Methods of judging degradation and measures to improve performance (IEC/CISPR/D/230/FDIS); German version prEN 55021
EN 60529	Degrees of protection provided by enclosures (IP Code) (IEC 60529)
EN 60664-1	Insulation coordination for equipment within low-voltage systems Part 1: Principles, requirements and tests (IEC 60664-1)
EN 60721-3-1	Classification of environmental conditions - Part 3-1: Classification of groups of environmental parameters and their severities - Section 1: Storage (IEC 60721-3-1); German version EN 60721-3-1
EN 60721-3-2	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 2: Transportation and handling (IEC 104/670/CD)
EN 60721-3-3	Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities; section 3: Stationary use at weatherprotected locations; Amendment A2 (IEC 60721-3-3); German version EN 60721-3-3
EN61000-2-1	Electromagnetic compatibility (EMC) - Part 2: Environment - Section 1: Description of the environment - Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems
EN 61000-2-4	Electromagnetic compatibility (EMC) - Part 2-4: Environment; Compatibility levels in industrial plants for low-frequency conducted disturbances (IEC 61000-2-4); German version EN 61000-2-4
EN 61000-4-2	Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test (IEC 61000-4-2); German version EN 61000-4-2
EN61000-4-3	Electromagnetic compatibility (EMC) - Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test (IEC 61000-4-3); German version EN 61000-4-3
EN 61000-4-4	Electromagnetic compatibility (EMC) - Part 4-4: Testing and measurement techniques - Electrical fast transient/burst immunity test (IEC 61000-4-4); German version EN 61000-4-4

EN 61000-4-5	Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test (IEC 61000-4-5); German version EN 61000-4-5
EN 61000-4-6	Electromagnetic compatibility (EMC) - Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields (IEC 61000-4-6); German version EN 61000-4-6
EN 61000-4-34	Electromagnetic compatibility (EMC) - Part 4-34: Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests for equipment with mains current more than 16 A per phase (IEC 61000-4-34); German version EN 61000-4-34
EN 61508-17	Functional safety of electrical/electronic/programmable electronic safety-related systems – Part 17 (VDE 0803-17, IEC 61508-17)
EN 62061	Safety of machinery - functional safety of electrical, electronic and programmable electronic safety-related systems (VDE 0113-50, IEC 62061)
EN ISO 13849-1	Safety of machinery - safety-related parts of control systems - Part 1: General principles for design (ISO 13849-1); German version EN ISO 13849-1

Standards that are used in the environment of the drive converter

DGUV regulation 3	Electrical installations and equipment
DIN 46228-1	Wire-end ferrules; Tube without plastic sleeve
DIN 46228-4	Wire-end ferrules; Tube with plastic sleeve
DINIEC 60364-5-54	Low-voltage electrical installations - Part 5-54: Selection and erection of electrical equipment - Earthing arrangements, protective conductors and protective bonding conductors (IEC 64/1610/CD)
DIN VDE 0100-729	Low-voltage electrical installations - Part 7-729: Requirements for special installations or locations - Operating or maintenance gangways (IEC 60364-7-729:2007, modified); German implementation HD 60364-7-729:2009
DNVGL-CG-0339	Environmental test specification for electrical, electronic and programmable equipment and systems
EN 1037	Safety of machinery - Prevention of unexpected start-up; German version EN 1037
EN 12502-15	Protection of metallic materials against corrosion - Part 15
EN 60204-1	Safety of machinery - electrical equipment of machines Part 1: General requirements (VDE 0113-1, IEC 44/709/CDV)
EN 60439-1	Low-voltage switchgear and controlgear assemblies - Part 1: Type-tested and partially type-tested assemblies (IEC 60439-1); German version EN 60439-1
EN 60947-7-1	Low-voltage switchgear and controlgear - Part 7-1: Ancillary equipment - Terminal blocks for copper conductors (IEC 60947-7-1:2009); German version EN 60947-7-1:2009
EN 60947-8	Low-voltage switchgear and controlgear - Part 8: Control units for built-in thermal protection (PTC) for rotating electrical machines (IEC 60947-8:2003 + A1:2006 + A2:2011)
EN61373	Railway applications - Rolling stock equipment - Shock and vibration tests (IEC 61373); German version EN 61373
EN 61439-1	Low-voltage switchgear and controlgear assemblies - Part 1: General rules (IEC 121B/40/CDV); German version FprEN 61439-1
VGB R 455 P	Water treatment and use of materials in cooling systems
DIN EN 60939-1	Passive filter units for electromagnetic interference suppression - Part 1: Generic specification (IEC 60939-1:2010); German version EN 60939-1:2010

1 Basic Safety Instructions

The COMBIVERT is designed and constructed in accordance with state-of-the-art technology and the recognized safety rules and regulations However, the use of such devices may cause functional hazards for life and limb of the user or third parties, or damages to the system and other material property.

The following safety instructions have been created by the manufacturer for the area of electric drive technology. They can be supplemented by local, country- or application-specific safety instructions. This list is not exhaustive. Violation of the safety instructions by the customer, user or other third party leads to the loss of all resulting claims against the manufacturer.

NOTICE

Hazards and risks through ignorance.

- ▶ Read the instructions for use!
- Observe the safety and warning instructions!
- ▶ If anything is unclear, please contact KEB Automation KG!

1.1 Target group

This instruction manual is determined exclusively for electrical personnel. Electrical personnel for the purpose of this instruction manual must have the following qualifications:

- Knowledge and understanding of the safety instructions.
- · Skills for installation and assembly.
- · Start-up and operation of the product.
- Understanding of the function in the used machine.
- Detection of hazards and risks of the electrical drive technology.
- Knowledge of DIN IEC 60364-5-54.
- · Knowledge of national safety regulations.

1.2 Transport, storage and proper use

The transport is carried out by qualified persons in accordance with the environmental conditions specified in this manual. Drive controller shall be protected against excessive strains.

Transport of drive controllers with an edge length >75 cm

The transport by forklift without suitable tools can cause a deflection of the heat sink. This leads to premature aging or destruction of internal components.

- ► Transport of drive controllers on suitable pallets.
- ▶ Do not stack drive controllers or burden them with other heavy objects.

Drive controllers contain electrostatic sensitive components.

- Avoid contact.
- Wear ESD-protective clothing.

Do not store drive controllers

- in the environment of aggressive and/or conductive liquids or gases.
- · with direct sunlight.
- outside the specified environmental conditions.

1.3 Installation

A DANGER

Do not operate in an explosive environment!

► The COMBIVERT is not intended for the use in potentially explosive environment.

A CAUTION

Maximum design edges and high weight!

Contusions and bruises!

- ▶ Never stand under suspended loads.
- Wear safety shoes.
- ► Secure drive converter accordingly when using lifting gear.
- To prevent damages to the device:
- Make sure that no components are bent and/or isolation distances are changed.
- The device must not be put into operation in case of mechanical defects.
- Do not allow moisture or mist to penetrate the unit.
- Avoid dust permeating the device. Allow for sufficient heat dissipation if installed in a dust-proof housing.
- Note installation position and minimum distances to surrounding elements. Do not cover the ventilation openings.
- Mount the drive controller according to the specified degree of protection.
- Make sure that no small parts fall into the COMBIVERT during assembly and wiring (drilling chips, screws etc.). This also applies to mechanical components, which can lose small parts during operation.
- Check the reliable fit of the device connections in order to avoid contact resistances and sparking.
- Do not walk-on drive controller.
- · Follow all safety instructions!

1.4 Electrical connection

A DANGER

Voltage at the terminals and in the device!

Danger to life due to electric shock!

- ▶ Never work on the open device or never touch exposed parts.
- ► For any work on the unit switch off the supply voltage, secure it against switching on and check absence of voltage by measuring at the input terminals.
- ► Wait until all drives has been stopped in order that no regenerative energy can be generated.
- ▶ Await capacitor discharge time (5 minutes). Check absence of voltage by measuring at the DC terminals.
- ▶ If personal protection is required, install suitable protective devices for drive converters.
- Never bridge upstream protective devices (also not for test purposes).
- Connect the protective earth conductor always to drive converter and motor.
- ▶ Install all required covers and protective devices for operation.
- ▶ The control cabinet shall be kept closed during operation.
- ▶ Residual current: This product may cause a dc current in the protective earth conductor. When a residual current protective device (RCD) or a residual current monitoring device (RCM) is used for the protection against direct or indirect contact, only a RCD or RCM type B is permitted on the power supply side of this product.
- ▶ Drive converters with a leakage current > 3.5 mA AC current (10 mA DC current) are intended for a stationary connection. Protective earth conductors must be designed in accordance with the local regulations for equipment with high leakage currents according to EN 61800-5-1, EN 60204-1 or DIN IEC 60364-5-54.

If personnel protection is required during installation of the system, suitable protective devices must be used for drive converters.

www.keb.de/fileadmin/media/Manuals/knowledge/04_techinfo/00_general/ti_rcd_0400_0002_gbr.pdf

Installations which include drive controller shall be equipped with additional control and protective devices in accordance with the relevant applicable safety requirements, e.g. act respecting technical equipment, accident prevention rules etc. They must always be complied with, also for drive controller bearing a CE marking.

For a trouble-free and safe operation, please pay attention to the following instructions:

- The electrical installation shall be carried out in accordance with the relevant requirements.
- Cable cross-sections and fuses must be dimensioned by the user according to the specified minimum/maximum values for the application.
- The wiring must be made with flexible copper cable for a temperature > 75°C.
- Connection of the drive converter is only permissible on symmetrical networks with a maximum line voltage (L1, L2, L3) with respect to earth (N/PE) of max. 300 V. An isolating transformer must be used for supply networks which exceed this value! In case of non-compliance the control is not longer considered to be a PELV circuit.
- With existing or newly wired circuits the person installing the units or machines must ensure that the PELV requirements are met.
- For drive converters that are not isolated from the supply circuit (in accordance with *EN 60721-3-2*) all control lines must be included in other protective measures (e.g. double insulation or shielded, earthed and insulated).
- When using components without isolated inputs/outputs, it is necessary that equipotential bonding exists between the components to be connected (e.g. by the equipotential line). Disregard can cause destruction of the components by equalizing
 currents.

1.4.1 EMC-compatible installation

Observance of the limit values required by EMC law is the responsibility of the customer.

Notes on EMC-compatible installation can be found here. www.keb.de/fileadmin/media/Manuals/emv/0000neb0000.pdf

1.4.2 Voltage test

Testing with AC voltage (in accordance with *EN 60204-1* chapter 18.4) may not be executed, since there is danger for the power semiconductors in the drive controller.

Due to the radio interference suppression capacitors, the test generator will switch off immediately with a current fault.

According to *EN 60204-1* it is permissible to disconnect already tested components. Drive controllers of the KEB Automation KG are delivered ex works voltage tested to 100% according to product standard.

1.4.3 Insulation measurement

An insulation measurement (in accordance with *EN 60204-1* chapter 18.3) with DC 500V is permissible, if all power unit connections (grid-connected potential) and all control connections are bridged with PE. The insulation resistance of the respective device can be found in the technical data.

1.5 Start-up and operation

The drive controller must not be started until it is determined that the installation complies with the machine directive; Account is to be taken of *EN 60204-1*.

WARNING

Software protection and programming!

Hazards caused by unintentional behavior of the drive!

- ► Check especially during initial start-up or replacement of the drive controller if parameterization is compatible to application.
- ➤ Securing a unit solely with software-supported functions is not sufficient. It is imperative to install external protective measures (e.g. limit switch) that are independent of the drive controller.
- ► Secure motors against automatic restart.

A CAUTION

High temperatures at heat sink and coolant!

Burning of the skin!

- Cover hot surfaces safe-to-touch.
- ▶ If necessary, attach warning signs on the system.
- ▶ Before touching, check the surface and coolant lines.
- ▶ Before working let the unit cool down.
- During operation, all covers and doors shall be kept closed.
- · Use only approved accessories for this device.
- Never touch terminals, busbars or cable ends.

If a drive controller with electrolytic capacitors in a DC link (see technical data) has not been in operation for more than one year, observe the following instructions.

NOTICE

Continuous operation (S1) with load > 60 % or from a rated motor power of 55 kW!

Premature ageing of the electrolytic capacitors!

▶ Mains choke with $U_k = 4\%$ absolutely necessary.

Switching at the output

Switching between motor and drive controller is prohibited for single drives during operation as this may trigger the protection gear of the device. Function ,speed search' must be activated if switching can not be avoided. Speed search may only be triggered after closing the motor contactor (e.g. by switching the control release).

Connecting and disconnecting is permissible with multiple motor drives if at least 1 motor is running during the switch-over process. The drive controller must be dimensioned to the occurring starting currents.

The ,speed search' function must be activated if the motor is still running during a restart of the drive controller (mains on) (e.g. due to large rotating masses).

Switching an the input

For applications that require cyclic switching off and on of the drive controller, maintain an off-time of at least 5 min after the last switch on. If you require shorter cycle times please contact KEB Automation KG.

Short-circuit resistance

The drive converters are conditional short-circuit proof. After resetting the internal protection devices, the function as directed is guaranteed.

Exceptions:

- If an earth-leakage fault or short-circuit often occurs at the output, this can lead to a
 defect in the unit.
- If a short-circuit occurs during regenerative operation (2nd or 4th quadrant, regeneration into the DC link), this can lead to a defect in the unit.

1.6 Maintenance

The following maintenance work has to be carried out when required, but at least once per year by authorized and trained personnel. Check unit for loose screws and plugs and tighten if necessary.

- Check system for loose screws and plugs and tighten if necessary.
- ► Clean drive controller from dirt and dust deposits. Pay attention especially to cooling fins and protective grid of the fans.
- ► Examine and clean extracted air filter and cooling air filter of the control cabinet.
- Check the function of the fans of the drive controller. The fan must be replaced in case of audible vibrations or squeak.
- ▶ In the case of liquid-cooled drive controllers a visual test of the cooling circuit for leaks and corrosion must be carried out. The cooling circuit must be completely empty if a unit shall be switched off for a longer period. The cooling circuit must be blown out additionally with compressed air at temperatures below 0°C.

1.8 Repair

In case of malfunction, unusual noises or smells inform a person in charge!

A DANGER

Unauthorized exchange, repair and modifications!

Unpredictable malfunctions!

- ► The function of the drive controller is dependent on its parameterization. Never replace without knowledge of the application.
- Modification or repair is permitted only by KEB Automation KG authorized personnel.
- Only use original manufacturer parts.
- ▶ Infringement will annul the liability for resulting consequences.

In case of failure, please contact the machine manufacturer. Only the machine manufacturer knows the parameterisation of the used drive controller and can provide an appropriate replacement or induce the maintenance.

1.7 Disposal

Electronic devices of the KEB Automation KG are exclusively professional devices for further industrial processing (so-called B2B devices).

Manufacturers of B2B devices are obliged to take back and recycle devices manufactured after 14.08.2018. These devices may not be disposed at the collection centres of public sector disposal organisations.

If no deviating agreement has been made between the customer and KEB or no deviating mandatory legal regulation exists, KEB products marked in this way can be returned. Company and keyword to the return point can be taken from the list below. Shipping costs are paid by the customer. Thereupon the devices will be professionally recycled and disposed.

The entry numbers are listed country-specific in the following table. The corresponding KEB return addresses can be found on our website.

Withdrawal by	WEEE-RegNo.		Keyword	
Austria				
KEB Automation GmbH	ERA:	51976	Stichwort "Rücknahme WEEE"	
France				
RÉCYLUM - Recycle point	ADEME:	FR021806	Mots clés "KEB DEEE"	
Germany				
KEB Automation KG	EAR:	DE12653519	Stichwort "Rücknahme WEEE"	
Italy				
COBAT	AEE: (IT)	19030000011216	Parola chiave "Ritiro RAEE"	
Spain				
KEB Automation KG	RII-AEE	7427	Palabra clave "Retirada RAEE"	
Česko				
KEB Automation KG	RETELA	09281/20 ECZ	Klíčové slovo: Zpětný odběr OEEZ	

The packaging must be feed to paper and cardboard recycling.

2 Product Description

The device series F6 concerns to drive controllers, which are optimized for operation at synchronous and asynchronous motors. The COMBIVERT can be extended with a safety module for the use in safety-oriented applications. It can be operated with a fieldbus module at different fieldbus systems. The control board has a system comprehensive operating concept.

The COMBIVERT meets the requirements of the Low-Voltage Directive. The harmonized standards of the series *EN 61800-5-1* for drive controllers were used.

The COMBIVERT is a product of limited availability in accordance with *EN 61800-3*. This product may cause radio interference in residential areas. In this case the operator may need to take corresponding measures.

The machine directive, EMC directive, Low Voltage Directive and other guidelines and regulations must be observed depending on the version.

2.1 Specified application

The COMBIVERT serves exclusively for the control and regulation of three-phase motors. It is intended for the installation into electrical systems or machines.

Technical data and information for connection conditions shall be taken from the nameplate and from the instructions for use and must be strictly observed.

The used semiconductors and components of the KEB Automation KG are developed and dimensioned for the use in industrial products.

Restriction

If the product is used in machines, which work under exceptional conditions or if essential functions, life-supporting measures or an extraordinary safety step must be fulfilled, the necessary reliability and security must be ensured by the machine builder.

2.1.1 Residual risks

Despite intended use, the drive controller can reach unexpected operating conditions in case of error, with wrong parameterization, by faulty connection or unprofessional interventions and repairs. This can be:

- · wrong direction of rotation
- motor speed too high
- · motor is running into limitation
- motor can be under voltage even in standstill
- automatic start

2.2 Unintended use

The operation of other electric consumers is prohibited and can lead to the destruction of the devices. The operation of our products outside the indicated limit values of the technical data leads to the loss of any liability claims.

2.3 Product features

This instruction manual describes the power circuits of the following devices:

Device type: Drive controller

Series: COMBIVERT F6

Power range: 160...315 kW / 400 V

Housing 8

The COMBIVERT F6 is characterized by the following features:

- Operation of three-phase asynchronous motors and three-phase synchronous motors, in operating modes open-loop or closed-loop with and without speed feedback
- The following fieldbus systems are supported:
 EtherCAT, VARAN, PROFINET, POWERLINK or CAN
- · System-overlapping operating concept
- Wide operating temperature range
- · Low switching losses by IGBT power unit
- · Low noise development due to high switching frequencies
- · Different heat sink concepts are available
- Temperature-controlled fan, easily replaceable
- Torque limits and the s-curves are adjustable to protect the gearbox
- General protection functions of the COMBIVERT series against overcurrent, overvoltage, ground fault and overtemperature
- Analog inputs and outputs, digital inputs and outputs, relay output (potential-free), brake control and -supply, motor protection by l²t, KTY- or PTC input, two encoder interfaces, diagnostic interface, fieldbus interface (depending on the control board)
- Integrated safety function according to EN 61800-5-2

2.4 Part code

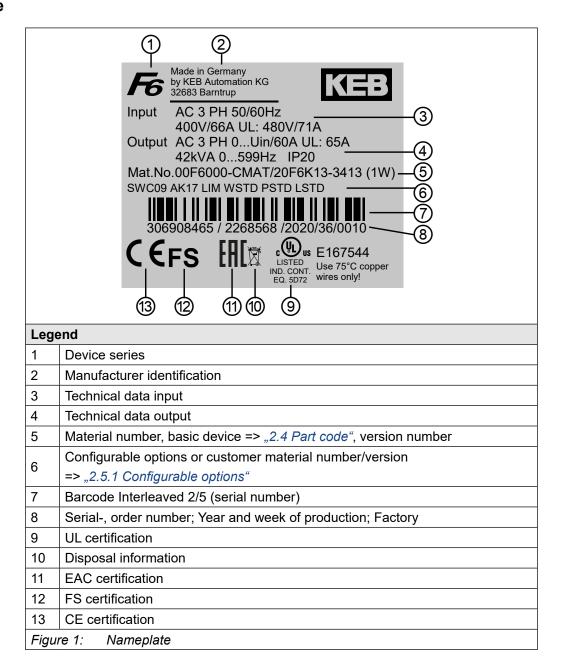
xxF6x	xx-xxx	x		
		Heat sink version	1: Air-cooler, mounted version 2: Liquid cooler (water), mount 3: Air-cooler, through-mount ve 4: Liquid cooler (water), throug 5: Air-cooler, through-mount ve 6: Liquid cooler (water), trough mounted braking resistors 7: Liquid cooler (oil), through-m 9: Liquid cooler (water), mount braking resistors A: Liquid cooler (water), trough mounted braking resistors A: Liquid cooler (water), mount braking resistors ve B: Liquid cooler (water), mount braking resistors version 2	ersion IP54 ph-mount version IP54 ersion IP20 p-mount version IP54, sub- mount version IP54 ed version, sub-mounted ph-mount version IP54, sub- persion 2
		Control board variant	APPLIKATION 1: Multi Encoder Interface, CA busmodule 3) KOMPAKT 1: Multi Encoder Interface, CAI 2: Multi Encoder Interface, CAI PRO 3: Multi Encoder Interface, CAI interface 3, RD485-potential 4: No Encoder, CAN® 2, Real-Tire safe relay 5: Multi Encoder Interface, CAI interface 3, Safety Relay	N ^{® 2)} , STO, EtherCAT ^{® 1)} N ^{® 2)} , STO, VARAN N ^{® 2)} , Real-Time Ethernet I free me Ethernetinterface ³⁾ ,
		Switching frequency, Software current limit, Turn-off current	1: 4kHz/125%/150% 7 2: 8kHz/125%/150% 8 3: 16kHz/125%/150% 9 4: 2kHz/150%/180% A 5: 4kHz/150%/180% E	6: 8 kHz/150%/180% 7: 16 kHz/150%/180% 6: 2 kHz/180%/216% 6: 4 kHz/180%/216% 6: 8 kHz/180%/216% 6: 16 kHz/180%/216%
		Voltage/ Connection type	1: 3ph 230 V AC/DC with brakin 2: 3ph 230 V AC/DC without brakin 3: 3ph 400 V AC/DC with brakin 4: 3ph 400 V AC/DC without brakin	raking transistor ng transistor
		Housing	29	
			1: Safety module type 1/STO a 3: Safety module type 3 4: Safety module type 4 5: Safety module type 5	at control type K
		Control type	A: APPLICATION K: COMPACT P: PRO	
		Series	COMBIVERT F6	
Table 1:	Part code	Inverter size	1033	
Table 1.	ran coue			

PRODUCT DESCRIPTION

Ether CAT.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany

CANopen® is registered trademark of CAN in AUTOMATION - International Users and Manufacturers Group e.V.


The Real-Time Ethernetbusmodul / Real-Time Ethernet interface contains various fieldbus control types which can be adjusted by software (parameter fb68)

The part code may not be used as order code, but only for identification!

2.5 Nameplate

PRODUCT DESCRIPTION

2.5.1 Configurable options

Features	Feature values	Description	
Software	SWxxx	Software status of the drive converter	
Accessories	Axxx	Selected accessories	
Accessories	NAK	No accessories	
Output frequency	LIM	Limitation to 599 Hz	
activation ULO	ULO	> 599 Hz activated	
\\/amonti.	WSTD	Warranty - Standard	
Warranty	Wxxx	Warranty extension	
Developmention	PSTD	Parameterization - Standard	
Parameterization	Pxxx	Parameterization - Customer-specific	
Namonlata laga	LSTD	Logo - Standard	
Nameplate logo	Lxxx	Logo - Customer-specific	
Figure 2: Configurable options			

[&]quot;x" indicates a variable value

3 Technical Data

Unless otherwise indicated, all electrical data in the following chapter refer to a 3-phase AC mains.

3.1 Operating conditions

3.1.1 Climatic environmental conditions

Storage	Storage		Class	Descriptions
Ambient temperatur	Ambient temperature		1K4	-2555°C
Relative humidity		EN 60721-3-1	1K3	595% (without condensation)
Storage height		_	_	Max. 3000 m above sea level
Transport		Standard	Class	Descriptions
Ambient temperatur	е	EN 60721-3-2	2K3	-2570°C
Relative humidity		EN 60721-3-2	2K3	95% at 40 °C (without condensation)
Operation		Standard	Class	Descriptions
Ambient temperatur	е	EN 60721-3-3	3K3	540°C (extended to -1045°C)
Coolant inlet tem-	Air	_	_	540°C (-1045°C)
perature	Water	_	_	540°C
Relative humidity		EN 60721-3-3	3K3	585% (without condensation)
Version and degree of protection		EN 60529	IP20	Protection against foreign material > ø12.5 mm No protection against water Non-conductive pollution, occasional condensation when PDS is out of service. Drive controller generally, except power connections and fan unit (IPxxA)
Site altitude Table 2: Climatic environme		– ntal conditions	-	 Max. 2000 m above sea level With site altitudes over 1000 m a derating of 1% per 100 m must be taken into consideration. With site altitudes over 2000 m, the control board to the mains has only basic isolation. Additional measures must be carried out when wiring the control system.

3.1.2 Mechanical environmental conditions

Storage	Standard	Class	Descriptions
Vibratian limita	EN 60704 0 4	4140	Vibration amplitude 1.5 mm (29 Hz)
Vibration limits	EN 60721-3-1	1M2	Acceleration amplitude 5 m/s² (9200 Hz)
Shock limit values	EN 60721-3-1	1M2	40 m/s²; 22 ms
Transport	Standard	Class	Descriptions
			Vibration amplitude 3.5 mm (29 Hz)
Vibration limits	EN 60721-3-2	2M1	Acceleration amplitude 10 m/s² (9200 Hz)
			(Acceleration amplitude 15 m/s² (200500 Hz))*
Shock limit values	EN 60721-3-2	2M1	100 m/s ² ; 11 ms
Operation	Standard	Class	Descriptions
	EN 60721-3-3	3M4	Vibration amplitude 3.0 mm (29 Hz)
 Vibration limits	EN 00721-3-3	31014	Acceleration amplitude 10 m/s² (9200 Hz)
Vibration limits	EN 61900 5 1		Vibration amplitude 0.075 mm (1057 Hz)
	EN 61800-5-1 _	_	Acceleration amplitude 10 m/s² (57150 Hz)
Shock limit values	EN 60721-3-3	3M4	100 m/s²; 11 ms
Pressure in the water cooler			Rated operating pressure: 10 bar
	_	_	Max. operating pressure: 10 bar
Table 3: Mechanical environmental conditions			

^{*}Not tested

3.1.3 Chemical / mechanical active substances

Storage		Standard	Class	Descriptions
Contamination	Gases	EN 60721-3-1	1C2	_
Contamination	Solids	EN 00721-3-1	1S2	-
Transport		Standard	Class	Descriptions
Contamination	Gases	EN 60721-3-2	2C2	-
Contamination	Solids		2S2	_
Operation		Standard	Class	Descriptions
Contamination	Gases	EN 60721-3-3	3C2	-
Contamination	Solids	EN 00/21-3-3	3S2	-
Table 4: Chemical / mechanical active substances				

3.1.4 Electrical operating conditions

3.1.4.1 Device classification

Requirement	Standard	Class	Descriptions	
Overveltage estagen	EN 61800-5-1	III	-	
Overvoltage category	EN 60664-1		-	
Pollution degree	EN 60664-1	2	Non-conductive pollution, occasional condensation when PDS is out of service	
Table 5: Device classification				

3.1.4.2 Electromagnetic compatibility

The indicated values are only valid for devices with external filter.

EMC emitted interference	Standard	Class	Descriptions		
Cable-fed disturbances	EN 61800-3	C2	_		
Radiated interferences	EN 61800-3	C2	_		
Interference immunity	Standard	Level	Descriptions		
Static disabourse	EN 64000 4.0	8kV	AD (air discharge)		
Static discharges	EN 61000-4-2	4 kV	CD (contact discharge)		
Burst - Ports for process measurement control lines and signal interfaces	EN 61000-4-4	2kV	_		
Burst - Power ports	EN 61000-4-4	4 kV	_		
Surge Dower ports	EN 61000-4-5	1kV	Phase-phase		
Surge - Power ports		2kV	Phase-ground		
Cable-fed disturbances, induced by radio-frequency fields	EN 61000-4-6	10 V	0.1580 MHz		
		10 V/m	80 MHz1 GHz		
Electromagnetic fields	EN 61000-4-2	3V/m	1.42 GHz		
		1 V/m	22.7 GHz		
Voltage fluctuations/	EN 61000-2-1		-15 %+10 %		
voltage dips	EN 61000-4-34	1	90 %		
Frequency changes	EN 61000-2-4		≤ 2 %		
Voltage deviations	EN 61000-2-4		±10%		
Voltage unbalance	EN 61000-2-4	_	≤ 3 %		
Table 6: Electromagnetic compatibility					

3.2 Device data of the 400 V devices

3.2.1 Overview of the 400 V devices

The technical data are for 2/4-pole standard motors. With other pole numbers the drive controller must be dimensioned onto the rated motor current. Contact KEB for special or medium frequency motors.

Device size			27	28	29	3	0
Housing					8	<u>'</u>	
Rated apparent output power		Sout / kVA	208	256	319	39	95
Max. rated motor power	1)	Pmot / kW	160	200	250	3	15
Rated input voltage		Un / V		4	00 (UL: 48	0)	
Input voltage range		Uin / V			280550		
Mains phases					3		
Mains frequency		f _N / Hz			50 / 60 ±2		
Rated input current	•	lin / A	315	390	485	60	00
@ U _N = 400V							
Rated input current @ UN = 480V		Iin_UL / A	269	337	414	49	94
Insulation resistance @ Udc = 500V		Riso / MΩ			> 15		
Output voltage		Uout / V			0 <i>Uin</i>		
Output frequency	2)	fout / Hz			0599		
Output phases					3		
Rated output current		In / A	300	370	460	E-	70
@ <i>U</i> _N = 400V		IN / A	300	370	460	5	70
Rated output current		In_ul / A	260	325	400	۸.	77
@ <i>U</i> N = 480V		IN_OL I A	200	323	400	4	
Rated output overload (60s)	3) 4)	160s / %		12	25		150
Software current limit	3)	Ilim / %		12	25		150
Overcurrent	3)	loc / %		15	50		180
Rated switching frequency		<i>f</i> s⊬ / kHz	4	4	2		2
Max. switching frequency	5)	fs_max / kHz	8	8	8		3
Power dissipation at rated operation	1)	P _D / kW	3	3.8	3.88	tbd	5.27
Overload current over time	3)	IOL / %	=>	3.2.3.1 Ove	erload chai	acteristic (OL)
Maximum current 0Hz/50Hz at fs=2kHz	<u>.</u>	lout_max / %	150/150	122/150	98/150	tbd	72/172
Maximum current 0Hz/50Hz at fs=4kHz		lout_max / %	91/150	74/150	59/122	tbd	40/110
Maximum current 0Hz/50Hz at fs=8kHz	_	lout_max / %	36/87	29/71	24/57	tbd	17/54
					contin	ued on the	next page

Device size	27	28	29	30		
Housing		8				
Max. braking current	IB_max / A			380		
Min. braking resistor value	RB_min / Ω	2.2				
Braking transistor	6)	Max. cycle time: 120s; ED: 50%		s; ED: 50%		
Protection function for braking transis- tor		Short-circuit monitoring				
Protection function braking transistor (Error GTR7 always on)	7)	Feedback signal evaluation and current shutdow		d current shutdown		
Table 7: Overview of the 400 V devi	ces					

Rated operation corresponds to $U_N = 400 \, \text{V}$, rated switching frequency, output frequency = $50 \, \text{Hz}$ (4-pole standard asynchronous motor).

3.2.2 Voltage and frequencies for 400V devices

Input voltages and frequencies			
Rated input voltage	Un / V	400	
Rated mains voltage (USA)	UN_UL / V	480	
Input voltage range	UIN / V	280550	
Input phases 3			
Mains frequency	f _N / Hz	50/60	
Mains frequency tolerance $\pm f_N$ / Hz 2			
Table 8: Input voltages and frequencies of the 400V devices			

DC link voltage		
DC link rated voltage @ Un = 400V	U _{N_dc} / V	565
DC link rated voltage @ Un_uL = 480V	UN_UL_dc / V	680
DC link voltage working voltage range	UIN_dc / V	390780
Table 9: DC link voltage for 400V devices		

The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Devices with higher max. output frequency are subject to export restrictions and are only available on request.

³⁾ The values refer in % to the rated output current In.

⁴⁾ Observe limitations => 3.2.3.1 Overload characteristic (OL).

⁵⁾ A detailed description of the derating => 3.3.1 Switching frequency and temperature.

⁶⁾ The ON time is additionally limited by the used braking resistor.

The feedback signal evaluation monitors the functionality of the braking transistor. The current is switched off via the internal mains input bridge of the AC supply.

DEVICE DATA OF THE 400V DEVICES

Output voltages and frequencies			
Output voltage at AC supply	1) Uout / V	0…U <i>N_ac</i>	
Output frequency	2) fout / Hz	0599	
Output phase 3			
Table 10: Output voltages and frequencies of the 400V devices			

The voltage to the motor is dependent on the actual input voltage and the control method ("Example of the calculation of the possible motor voltage:").

3.2.2.1 Example of the calculation of the possible motor voltage:

The motor voltage for dimensioning of the drive is depending on the used components. The motor voltage reduces according to the following table:

Component	Reduction / %	Example		
Mains choke Uk	4			
Drive converter open-loop	4	Open-loop drive converter with mains- and motor choke		
Drive converter closed-loop	8	at non-rigid supply system:		
Motor choke Uk 1		400 V mains voltage (100%) - 36 V reduced voltage (11		
Non-rigid supply system	2	= 356 V motor voltage		
Table 11: Example of the calculation of the possible motor voltage:				

3.2.3 Input and output currents / overload

Device size			27	28	29	30
Rated input current @ UN = 400V	1)	Iin / A	315	390	485	600
Rated input current @ UN_UL = 480V	1)	Iin_UL / A	269	337	414	494
Table 12: Input currents of the 400 V devices						

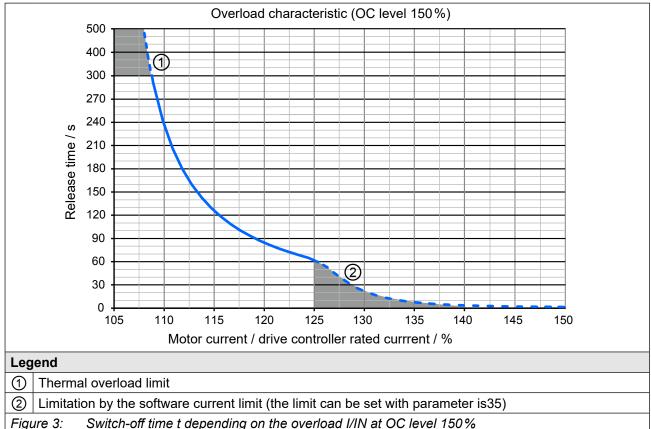
The values resulting from rated operation with B6 rectifier circuit and mains choke 4% Uk.

Device size			27	28	29	3	0	
Rated output current @ UN = 400V		In / A	300	370	460	70		
Rated output current @ UN_UL = 480V		IN_UL / A	260	0 325 400 477			77	
Rated output overload (60s)	1)	160s / %	125 15					
Overload current	1)	IOL / %	=> 3.2.3.1 Overload characteristic (OL)					
Software current limit	1) 2)		125					
Overcurrent	1)	loc / %	150				180	
Table 13: Output currents and overload of the 400 V devices								

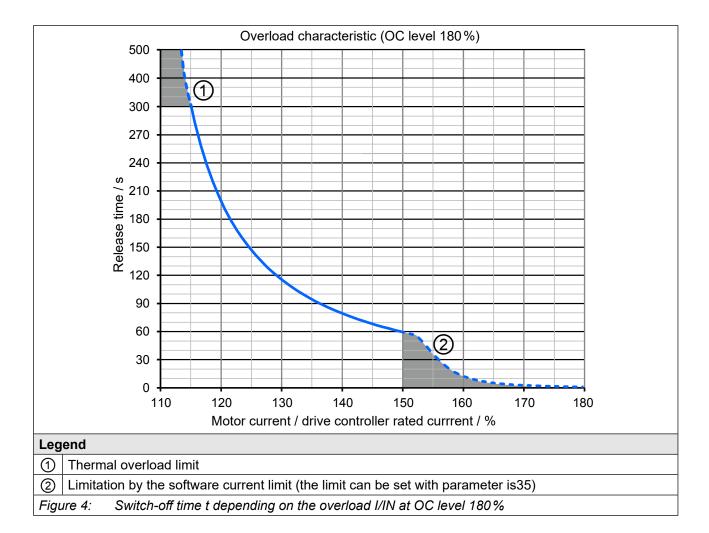
The values refer in % to the rated output current In.

The output frequency is to be limited in such a way that it does not exceed 1/10 of the switching frequency. Devices with higher max. output frequency are subject to export restrictions and are only available on request.

²⁾ Limitation of the current setpoint in closed-loop operation. This setpoint limit is not active in v/f operation.


3.2.3.1 Overload characteristic (OL)

All drive controllers can be operated at rated switching frequency with an utilization of 125 % for 60 s.


Restrictions:

- The thermal design of the heat sinks is based for rated operation. The following values, among others, are taken into account: rated output current, ambient temperature, rated switching frequency, rated voltage.
- At high ambient temperatures and/or high heat sink temperatures (for example, by preceding utilization nearby 100%) the drive controller can change to overtemperature error before triggering the protective function OL.
- At low output frequencies or switching frequencies higher than the rated switching frequency, the frequency-dependent maximum current can be exceeded before and error OL2 can be triggered

(=> 3.2.3.2 Frequency-dependent maximum current (OL2)).

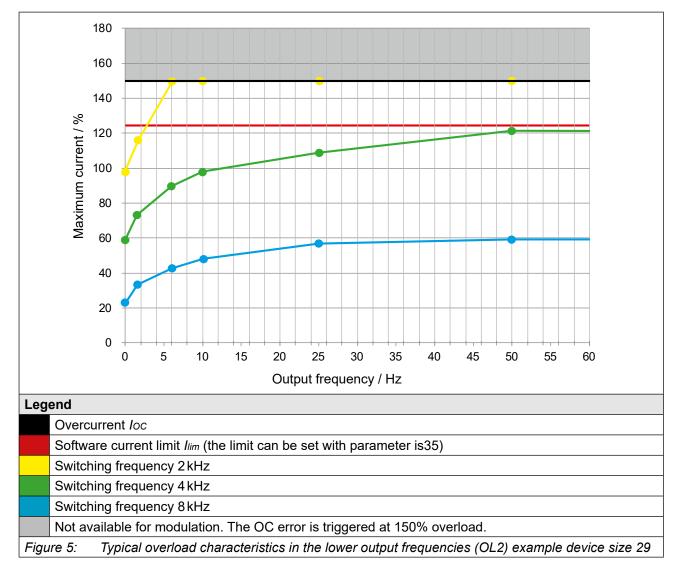
Switch-off time t depending on the overload I/IN at OC level 150%

- On exceeding a load of 105 % the overload integrator starts.
- When falling below the integrator counts backwards.
- If the integrator achieves the overload characteristic "ERROR overload (OL)" is triggered.

After a cooling time has elapsed, the error can be reset. The drive controller must remain switched on during the cooling period.

Operation in the range of the thermal overload limit

Due to the high slope of the overload characteristic, the duration of a permissible overload in this range ① cannot be determined exactly. Therefore, a maximum overload time of 300 s should be assumed when designing the drive controller.


3.2.3.2 Frequency-dependent maximum current (OL2)

The characteristics of the maximum currents for a switching frequency which are depending on the output frequency are different for each drive controller, but the following rules are generally applicable for housing size 8:

- Applies for the rated switching frequency: at 0 Hz output frequency the drive controller can provide at least the rated output current.
- Lower maximum currents apply for switching frequencies > rated switching frequency.

If error (OL2) shall be triggered on exceeding the maximum currents or if the switching frequency is automatically reduced (derating) can be adjusted in the drive controller parameters.

The following characteristics indicate the permissible maximum current for the output frequency values 0 Hz, 1,5 Hz, 6 Hz, 10 Hz, 25 Hz and 50 Hz. Device size 29 (OC level: 150 %) is represented exemplary. □

The frequency-dependent maximum current *lim* refers in % to the rated output current *ln*.

The current remains constant from the last specified output frequency value.

The values for the respective device size are listed in the following tables.

Frequency-dependent maximum current (air cooler)

Device size				2	7								
Rated switching frequency				4 k	Hz								
Output frequency	fout / Hz	0	1.5	6	10	25	50						
	2kHz	150	150	150	150	150	150						
Frequency-dependent maximum current @ fs //iim / %	4 kHz	91	112	136	147	150	150						
Basic Time Period = 62.5 µs (Parameter is22=0)	8kHz	36	52	66	72	82	87						
	1.75 kHz	150	150	150	150	150	150						
Frequency-dependent maximum current @ fs //iim / %	3.5 kHz	106	129	150	150	150	150						
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	50	67	84	91	103	112						
	1.5 kHz	150	150	150	150	150	150						
Frequency-dependent maximum current @ fs //iim / %	3kHz	120	145	150	150	150	150						
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	63	82	101	109	123	137						
	1.25 kHz	150	150	150	150	150	150						
Frequency-dependent maximum current @ fs liim %	2.5 kHz	136	150	150	150	150	150						
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	77	97	118	128	144	150						
Table 14: Frequency-dependent maximum current for device size 27													

Device size				2	8		150 150 71 71 150						
Rated switching frequency				4 k	Hz								
Output frequency	fout / Hz	0	1.5	6	10	25	50						
	2kHz	122	144	150	150	150	150						
Frequency-dependent maximum current @ fs //iim / %	4 kHz	74	91	110	119	134	150						
Basic Time Period = 62.5 µs (Parameter is22=0)	8kHz	29	42	54	58	66	71						
	1.75 kHz	122	144	150	150	150	150						
Frequency-dependent maximum current @ fs //im / %	3.5 kHz	86	104	129	145	150	150						
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	40	54	68	73	83	91						
	1.5 kHz	122	144	150	150	150	150						
Frequency-dependent maximum current @ fs //im / %	3kHz	98	117	148	150	150	150						
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	51	67	82	89	100	111						
	1.25 kHz	122	144	150	150	150	150						
Frequency-dependent maximum current @ fs liim %	2.5 kHz	110	131	150	150	150	150						
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	63	79	96	104	117	132						
Table 15: Frequency-dependent maximum current for device size 28													

Device size		29							
Rated switching frequency		2 kHz							
Output frequency	fout / Hz	0	1.5	6	10	25	50		
	2kHz	98	116	150	150	150	150		
Frequency-dependent maximum current @ fs // // // // // // //	4 kHz	59	73	89	96	108	122		
Basic Time Period = 62.5 µs (Parameter is22=0)	8kHz	24	34	43	47	53	57		
	1.75 kHz	98	116	150	150	150	150		
Frequency-dependent maximum current @ fs //iim / %	3.5 kHz	69	84	104	117	126	137		
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	33	44	55	59	67	73		
	1.5 kHz	98	116	150	150	150	150		
Frequency-dependent maximum current @ fs //iim / %	3 kHz	79	94	119	138	144	150		
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	41	54	66	71	80	90		
	1.25 kHz	98	116	150	150	150	150		
Frequency-dependent maximum current @ fs //iim / %	2.5 kHz	88	105	134	150	150	150		
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	50	64	77	84	94	106		
Table 16: Frequency-dependent maximum current fo	r device size	29					•		

Device size		30 (OC level: 150%)											
Rated switching frequency				2 k	Hz								
Output frequency	fout / Hz	0	1.5	6	10	25	50						
	2 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Frequency-dependent maximum current @ fs l_{lim} / %	4 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Basic Time Period = 62.5 µs (Parameter is22=0)	8kHz	tbd	tbd	tbd	tbd	tbd	tbd						
	1.75 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Frequency-dependent maximum current @ fs l_{lim} / %	3.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	tbd	tbd	tbd	tbd	tbd	tbd						
	1.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Frequency-dependent maximum current @ fs liim %	3 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	tbd	tbd	tbd	tbd	tbd	tbd						
	1.25 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Frequency-dependent maximum current @ fs liim %	2.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	tbd	tbd	tbd	tbd	tbd	tbd						
Table 17: Frequency-dependent maximum current fo	r device size	30 (00											

DEVICE DATA OF THE 400V DEVICES

Device size	,	30 (OC level: 180%)							
Rated switching frequency		2 kHz							
Output frequency	fout / Hz	0	1.5	6	10	25	50		
	2kHz	72	95	127	139	158	172		
Frequency-dependent maximum current @ fs /// // // //	4 kHz	40	56	77	86	100	110		
Basic Time Period = 62.5 µs (Parameter is22=0)	8kHz	17	27	37	42	49	54		
	1.75 kHz	72	95	126	139	158	172		
Frequency-dependent maximum current @ fs // // // // // // //	3.5 kHz	48	86	89	99	114	126		
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	23	35	47	53	61	68		
	1.5 kHz	72	95	127	139	158	172		
Frequency-dependent maximum current @ fs // // // // // // //	3kHz	56	76	102	113	129	141		
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	29	42	57	64	74	82		
	1.25 kHz	72	95	127	139	158	172		
Frequency-dependent maximum current @ fs liim %	2.5 kHz	64	85	114	126	144	156		
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	35	49	667	75	87	96		
Table 18: Frequency-dependent maximum current fo	r device size	30 (O	C level	: 180%)				

Frequency-dependent maximum current (Fluid cooler water)

Device size		27							
Rated switching frequency				4 k	Hz				
Output frequency	fout / Hz	0	1.5	6	10	25	50		
	2 kHz	150	150	150	150	150	150		
Frequency-dependent maximum current @ fs lim %	4 kHz	91	112	136	147	150	150		
Basic Time Period = 62.5 µs (Parameter is22=0)	8 kHz	36	52	66	72	82	87		
	1.75 kHz	150	150	150	150	150	150		
Frequency-dependent maximum current @ fs lim %	3.5 kHz	106	129	150	150	150	150		
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	50	67	84	91	103	112		
	1.5 kHz	150	150	150	150	150	150		
Frequency-dependent maximum current @ fs // 1/16 // %	3 kHz	120	145	150	150	150	150		
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	63	82	101	109	123	137		
	1.25 kHz	150	150	150	150	150	150		
Frequency-dependent maximum current @ fs lim %	2.5 kHz	136	150	150	150	150	150		
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	77	97	118	128	144	150		
Table 19: Frequency-dependent maximum current for	r device size	27							

Device size				2	8		
Rated switching frequency				4 k	Hz		
Output frequency	fout / Hz	0	1.5	6	10	25	50
	2 kHz	122	144	150	150	150	150
Frequency-dependent maximum current @ fs liim %	4 kHz	74	91	110	119	134	150
Basic Time Period = 62.5 µs (Parameter is22=0)	8 kHz	29	42	54	58	66	71
	1.75 kHz	122	144	150	150	150	150
Frequency-dependent maximum current @ fs liim %	3.5 kHz	86	104	129	145	150	150
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	40	54	68	73	83	91
	1.5 kHz	122	144	150	150	150	150
Frequency-dependent maximum current @ fs liim %	3 kHz	98	117	148	150	150	150
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	51	67	82	89	100	111
	1.25 kHz	122	144	150	150	150	150
Frequency-dependent maximum current @ fs lim %	2.5 kHz	110	131	150	150	150	150
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	63	79	96	104	117	132
Table 20: Frequency-dependent maximum current fo	r device size	28					

DEVICE DATA OF THE 400V DEVICES

Device size		29								
Rated switching frequency		2 kHz								
Output frequency	fout / Hz	0	1.5	6	10	25	50			
	2kHz	98	116	150	150	150	150			
Frequency-dependent maximum current @ fs liim %	4 kHz	59	73	89	96	108	122			
Basic Time Period = 62.5 µs (Parameter is22=0)	8kHz	24	34	43	47	53	57			
	1.75 kHz	98	116	150	150	150	150			
Frequency-dependent maximum current @ fs // // // // // //	3.5 kHz	69	84	104	117	126	137			
Basic Time Period = 71.4 µs (Parameter is22=1)	7 kHz	33	44	55	59	67	73			
	1.5 kHz	98	116	150	150	150	150			
Frequency-dependent maximum current @ fs // // // // // // //	3kHz	79	94	119	138	144	150			
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	41	54	66	71	80	90			
	1.25 kHz	98	116	150	150	150	150			
Frequency-dependent maximum current @ fs liim %	2.5 kHz	88	105	134	150	150	150			
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	50	64	77	84	94	106			
Table 21: Frequency-dependent maximum current for device size 29										

Device size			30 ((OC lev	vel: 15	0%)			
Rated switching frequency		2 kHz							
Output frequency	fout / Hz	0	1.5	6	10	25	50		
	2kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Frequency-dependent maximum current @ fs liim %	4 kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Basic Time Period = 62.5 µs (Parameter is22=0)	8kHz	tbd	tbd	tbd	tbd	tbd	tbd		
	1.75 kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Frequency-dependent maximum current @ fs liim %	3.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Basic Time Period = 71.4 µs (Parameter is22=1)	7 kHz	tbd	tbd	tbd	tbd	tbd	tbd		
	1.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Frequency-dependent maximum current @ fs liim %	3kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	tbd	tbd	tbd	tbd	tbd	tbd		
	1.25 kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Frequency-dependent maximum current @ fs Ilim %	2.5 kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	tbd	tbd	tbd	tbd	tbd	tbd		
Table 22: Frequency-dependent maximum current fo	r device size	30 (00	C level	: 150%)				

Device size			30	(OC lev	vel: 18	0%)	
Rated switching frequency				2 k	Hz		
Output frequency	fout / Hz	0	1.5	6	10	25	50
	2 kHz	72	95	127	139	158	172
Frequency-dependent maximum current @ fs l_{lim} / %	4 kHz	40	56	77	86	100	110
Basic Time Period = 62.5 µs (Parameter is22=0)	8 kHz	17	27	37	42	49	54
	1.75 kHz	72	95	126	139	158	172
Frequency-dependent maximum current @ fs Ilim %	3.5 kHz	48	86	89	99	114	126
Basic Time Period = 71.4 µs (Parameter is22=1)	7kHz	23	35	47	53	61	68
	1.5 kHz	72	95	127	139	158	172
Frequency-dependent maximum current @ fs liim %	3 kHz	56	76	102	113	129	141
Basic Time Period = 83.3 µs (Parameter is22=2)	6kHz	29	42	57	64	74	82
	1.25 kHz	72	95	127	139	158	172
Frequency-dependent maximum current @ fs $l_{\it lim}$ / %	2.5 kHz	64	85	114	126	144	156
Basic Time Period = 100 µs (Parameter is22=3)	5kHz	35	49	667	75	87	96
Table 23: Frequency-dependent maximum current for	r device size	30 (00	C level	: 180%)		

3.2.4 Power dissipation at rated operation

Device size			28	29	3	0
Overcurrent		180				
Power dissipation at rated operation 1)	<i>P</i> □ / kW	3	3.8	3.88	tbd	5.27
Table 24: Power dissipation of the 400 V devices						

¹⁾)Rated operation corresponds to $U_N = 400 \, \text{V}$; f_{SN} ; $f_N = 50 \, \text{Hz}$ (typically value)

3.2.5 Fuse protection of the drive controller

			Max. size of the fuse	e/A
Device size	<i>U</i> _N = 400V gG (IEC)	<i>U</i> _N = 480V class "J"		<i>U</i> _N = 480V aR
	SCCR 100 kA	SCCR 18kA	SCCR 100 kA	Type 1)
				COOPER BUSSMANN 170M3xx9
				COOPER BUSSMANN 170M3069
27	500	400	400	COOPER BUSSMANN 170M3119
21	300	400	400	COOPER BUSSMANN 170M3269
				LITTELFUSE L70QS400.X
				SIBA 206xy32.400
				COOPER BUSSMANN 170M3021
				COOPER BUSSMANN 170M3121
28	500	500	500 500	COOPER BUSSMANN 170M3171
20	3 500	500	500	COOPER BUSSMANN 170M3271
				LITTELFUSE L70QS500.X
				SIBA 206xy32.500
				COOPER BUSSMANN 170M3022
				COOPER BUSSMANN 170M3122
29	630	600	550	COOPER BUSSMANN 170M3172
29	030	000		COOPER BUSSMANN 170M3272
				SIBA 206xy32.550
			600	LITTELFUSE L70QS600.X
				COOPER BUSSMANN 170M3023
				COOPER BUSSMANN 170M3123
30	630	600	630	COOPER BUSSMANN 170M3173
30	030	000		COOPER BUSSMANN 170M3273
				SIBA 206xy32.630
			600	LITTELFUSE L70QS600.X
Table 25:	Fuse protectio	n of the 400 V / 48	30 V devices	

¹⁾ "x" stands for different indicators. "y" stands for different connection variants.

Short-circuit capacity

After requests from *EN 60439-1* and *EN 61800-5-1* the following is valid for the connection to a network: The devices are suitable for use in a circuit capable of delivering not more than 100 kA eff. unaffected symmetrical short-circuit current.

3.3 General electrical data

3.3.1 Switching frequency and temperature

The drive controller cooling is designed in such a way that at rated conditions the heat sink overtemperature threshold is not exceeded. A switching frequency higher than the rated switching frequency also produces higher losses and thus a higher heat sink heating.

If the heat sink temperature reaches a critical threshold (T_{DR}), the switching frequency can be reduced automatically step by step. This prevents that the drive controller switches off due to overheating of the heat sink. If the heat sink temperature falls below T_{UR} , the switching frequency is increased back to the setpoint. At temperature T_{EM} the switching frequency is immediately reduced to rated switching frequency. "Derating" must be activated, for this function to work.

3.3.1.1 Switching frequencies and temperatures for air coolers

Device size			27	28	29	3	0	
Overcurrent		loc / %		15	50		180	
Rated switching frequency	1)	fsn / kHz	4	4	2	2	2	
Max. switching frequency	1)	fs_max / kHz	8	8	8	8	8	
Min. switching frequency	1)	fs_min / kHz	1.25	1.25	1.25	1.25	1.25	
Max. heat sink temperature		T _H s / °C	tbd	85	85	tbd	97	
Temperature for derating the switching frequency		T _{DR} / °C	tbd	75	75	tbd	85	
Temperature for uprating the switching frequency		Tur / °C	tbd	65	65	tbd	75	
Temperature for switching to rated switching frequency		Тем / °C	tbd	80	80	tbd	90	
Table 26: Switching frequencies and temperatures for air coolers								

The output frequency should be limited in such a way that it does not exceed 1/10 of the switching frequency.

Air-cooled drive controllers of device size 30 with overcurrent of 180 %.

• At extended ambient temperature of 45°C: Observe the maximum switchon time of 80% with a maximum cycle duration of 120s.

3.3.1.2 Switching frequencies and temperatures for fluid coolers (water)

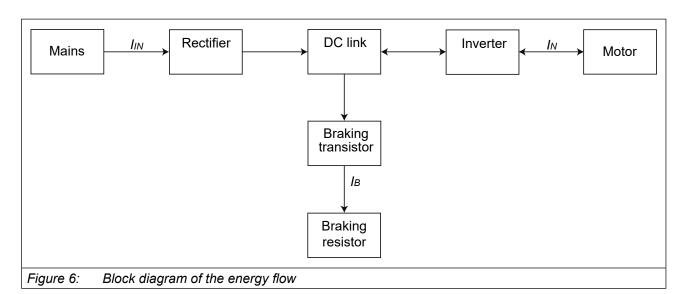
Device size			27	28	29	3	0				
Overcurrent		loc / %		1:	50		180				
Rated switching frequency	1)	fsn / kHz	4	4	2	2	2				
Max. switching frequency	1)	fs_max / kHz	tbd	8	8	8	8				
Min. switching frequency	1)	fs_min / kHz	1.25	1.25	1.25	1.25	1.25				
Max. heat sink temperature		Tнs / °C	tbd	70	70	73	78				
Temperature for derating the switching frequency		T _{DR} / °C	tbd	60	60	63	68				
Temperature for uprating the switching frequency		Tur / °C	tbd	50	50	53	58				
Temperature for switching to rated switching frequency		Тем / °C	tbd	65	65	68	73				
Table 27: Switching frequency and temperatur											

The output frequency should be limited in such a way that it does not exceed 1/10 of the switching frequency.

3.3.2 DC link / braking transistor function

Activation of the braking transistor function

To be able to use the braking transistor, the function must be activated with parameter "is30 braking transistor function".


For more information => F6 Programming manual.

NOTICE

Falling below the minimum braking resistor value!

Destruction of the drive controller

▶ The minimum brake resistance value must not fall below!

NOTICE

Destruction of the drive controller

If the error "ERROR GTR7 always ON" occurs, the current consumption is switched off internally via the mains input bridge of the AC supply.

► The drive controller must be galvanically isolated from the supply mains within 5 minutes!

Device size			27	28	29	30
Rated DC link voltage @ Un = 400V		Un_dc / V	565			
Rated DC link voltage @ UN_UL = 480V		UN_dc_UL / V		680		
DC link voltage working voltage range		UIN_dc / V		390	780	
DC switch-off level "ERROR Underpotential"□		Uup / V		24	10	
DC switch-off level "ERROR Overpotential"□		Uop / V	840			
DC switch-off level braking transistor	1)	U _B / V	780			
Max. braking current		IB_max / A	380			
Min. braking resistor value		RB_min / Ω	2.2			
Braking transistor	3)		Max. cycle time: 120 s; ED: 50 %		D: 50 %	
Protection function for braking transistor			Short-circuit monitoring			
Protection function braking transistor	2)		Feedback signal evaluation and		on and	
(Error GTR7 always on)	-/		current shutdown			
DC link capacity		C / µF	9900 11700 15600 18600			
Table 28: DC link / braking transistor function of the	Table 28: DC link / braking transistor function of the 400 V devices					

The DC switching level for the braking transistor is adjustable. The default value is the value specified in the table.

3.3.3 Sub-mounted braking resistors

Technical data of the sub-mounted braking resistors			
Braking resistor value	R/Ω	2.25	
Rated power	<i>P</i> _D / W	2120	
Cyclic duration factor referring to 120s @ <i>UN_dc</i> = 780V	ED/s	0.62	
Table 29: Sub-mounted braking	resistors		

NOTICE

Observe the power dissipation of the sub-mounted braking resistors

In braking mode with sub-mounted braking resistors, the power to be dissipated of the heat sink will be increased.

► Consider the power dissipation of the braking resistors when designing the cooling system.

The feedback signal evaluation monitors the functionality of the braking transistor. The current is switched off via the internal mains input bridge of the AC supply.

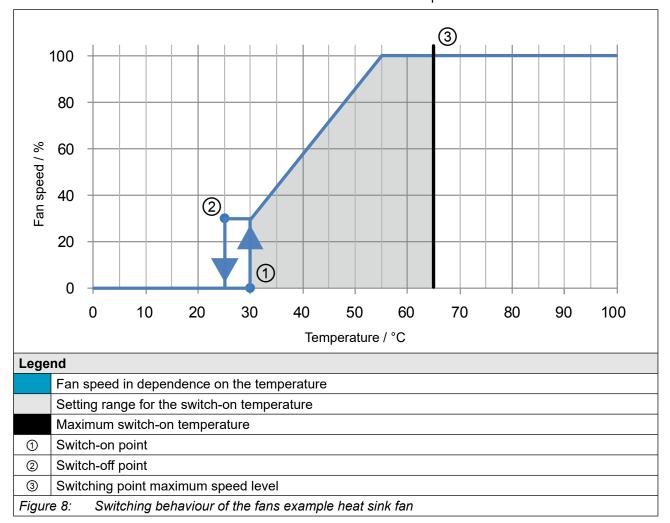
³⁾ The ON time is additionally limited by the used braking resistor

GENERAL ELECTRICAL DATA

3.3.4 Fan

Device size		27	28	29	30	
Interior fon	Number	2				
Interior fan Variable-speed yes		es				
Lie et einis fen	Number	2				
Heat sink fan	Variable-speed	yes				
Figure 7: Fan						

The fans are variable-speed. They are automatically controlled to high or low speed depending on the setting of the temperature limits in the software.

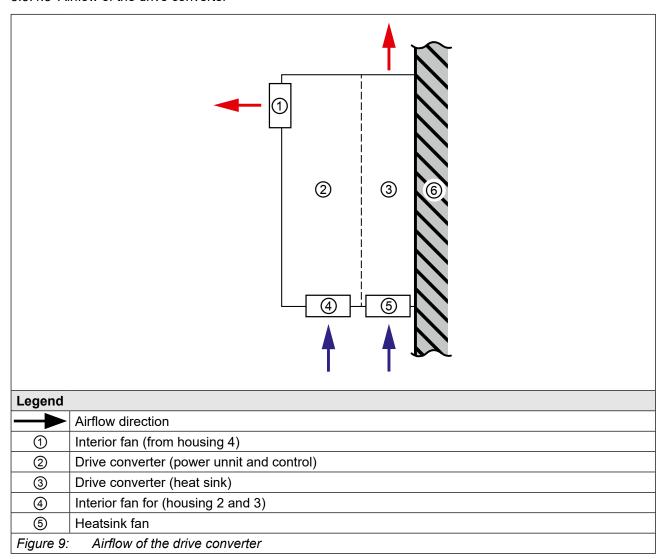

NOTICE

Destruction of the fans!

▶ Take care that no foreign substances drop into the fan!

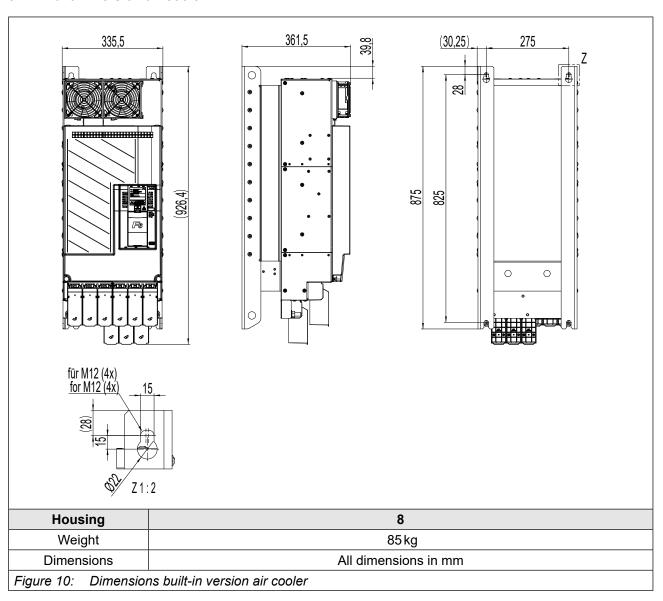
3.3.4.1 Switching behaviour of the fans

The fans have different switch-on and switch-off points.

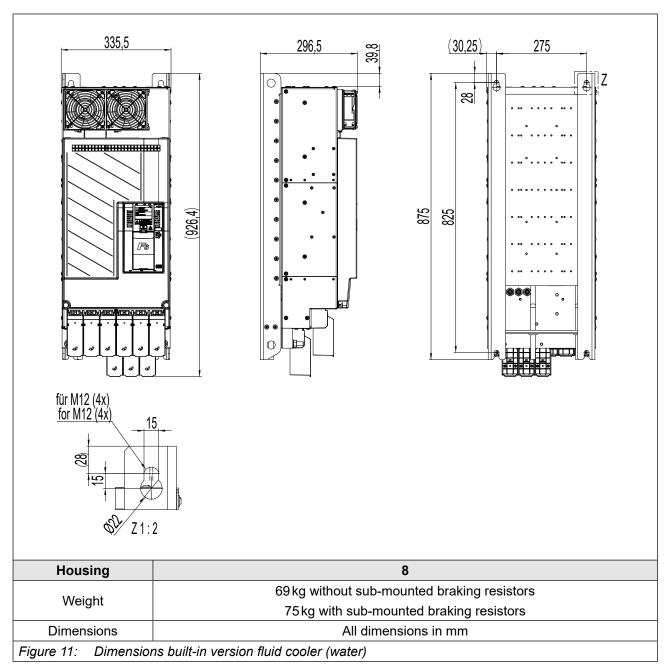


3.3.4.2 Switching points of the fans

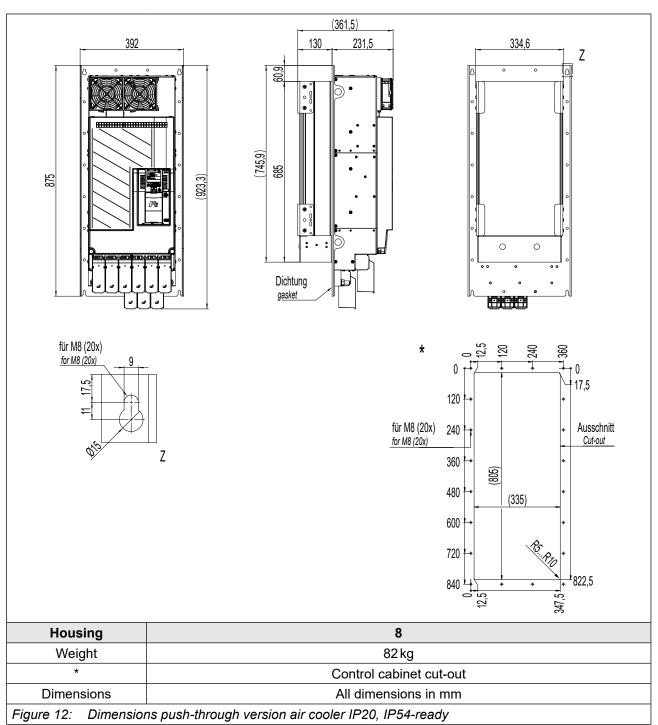
The switching point for the switch-on temperature and the maximum speed level of the fans are adjustable. The following table shows the default values.


Fan		Heat sink	Interior
Switch-on temperature	T/°C	30	20
Maximum speed level	T/°C	65	40
Table 30: Switching point	nts of the	fans	

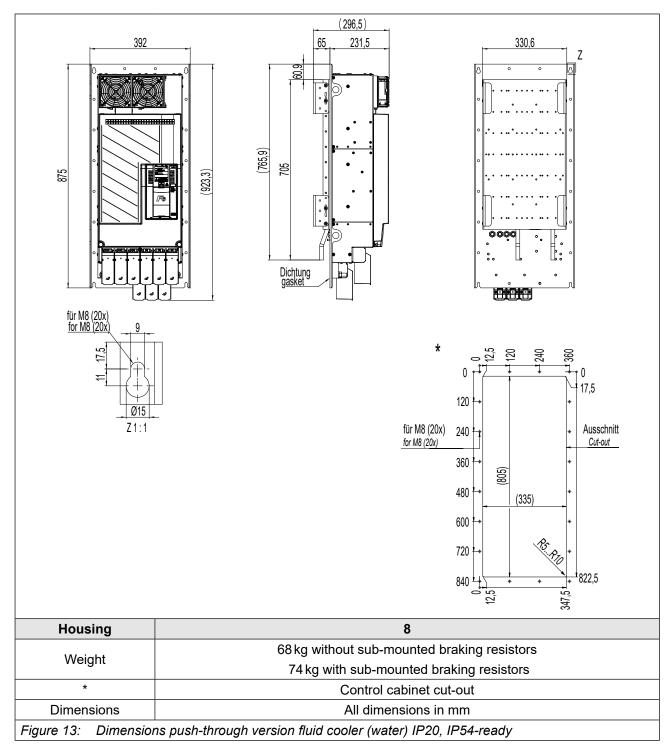
3.3.4.3 Airflow of the drive converter


3.4 Dimensions and weights

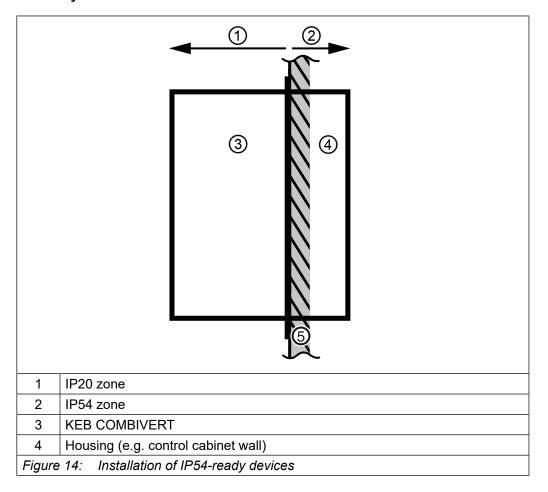
3.4.1 Built-in version air cooler



3.4.2 Built-in version fluid cooler (water)


3.4.3 Push-through version air cooler IP20, IP54-ready

50



3.4.4 Push-through version fluid cooler (water) IP20, IP54-ready

51

3.4.5 Installation of IP54-ready devices

IP54 zone: Heat sink outside the housing

The protection class IP54 can only be achieved when the device is properly installed.

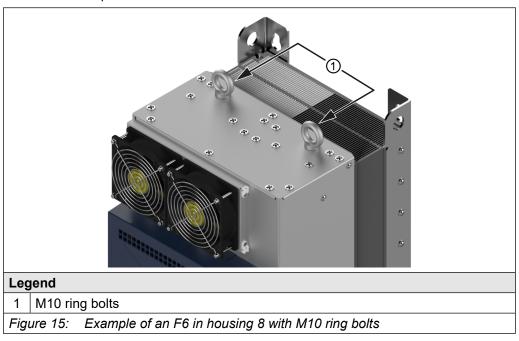
For proper installation, a suitable IP54 seal

(=> "4.3.2 Seal for IP54-ready devices") must be installed between heat sink and housing (e.g. control cabinet wall).

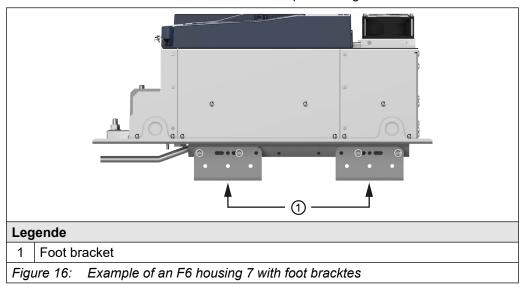
The tightness must be checked after the installation. If properly installed, the separation to the housing corresponds to degree of protection IP54.

IP20 zone: Device inside the housing

This part is intended for the installation in a suitable housing for the required degree of protection (e.g. control cabinet).


The power connections are excluded => "3.1.1 Climatic environmental conditions".

UL: Device heat sink is classified as NEMA type 1


3.4.6 Control cabinet installation

Drive controllers in housings 7, 8 and 9 have 2 threaded bushes for M10 ring bolts according to *DIN 580* on the top. These are used to accommodate appropriate lifting devices for transport.

3.4.6.1 Devices with foot bracket

The foot bracket can be removed after mounting the drive converter. The foot brackets must be stored to make the drive converter transportable again in case of service.

NOTICE

Damage to the water connections

Bending of the tubes!

▶ Never set the device down or transport it without the foot bracket!

DIMENSIONS AND WEIGHTS

3.4.6.2 Mounting instructions

For mounting the drive controllers, the following mounting materials were tested with the corresponding quality by KEB.

Required material	Tightening torque
Hexagon-head screw <i>ISO 4017</i> - M12 - 8.8 galvanized	80 Nm
nexagon-nead screw 750 4017 - W12 - 6.6 gaivanized	705lb inch
Flat washer ISO 7090 - 12 - 200 HV galvanized	_
Table 31: Mounting instructions for built-in version	

Required material	Tightening torque	
Heyegen head cerew ISO 4017, MO, 9.9 gelyenized	22 Nm	
Hexagon-head screw ISO 4017 - M8 - 8.8 galvanized	190 lb inch	
Flat washer ISO 7090 - 8 - 200 HV galvanized –		
Table 32: Mounting instructions for push-through version	1	

NOTICE

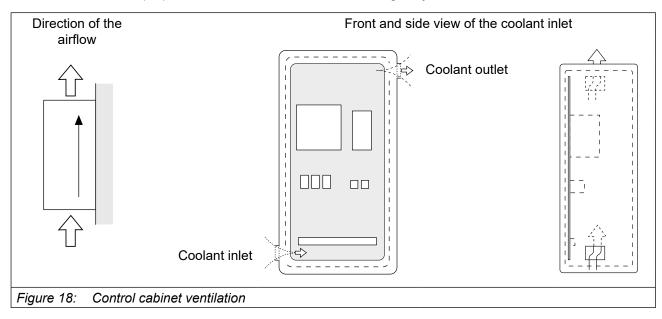
Use of other mounting material

► The alternatively selected mounting material must comply with the above-mentioned material characteristics (quality) and tightening torques!

The use of other mounting materials is beyond KEB's control and is therefore the sole responsibility of the customer.

3.4.6.3 Mounting distances

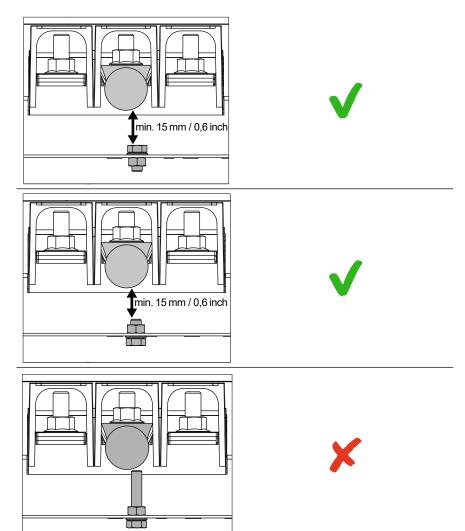
Power loss for the control cabinet dimension => 3.2.4 Power dissipation at rated operation. A lower value can be used here depending on the operating mode/load.



Achieve maximum cooling capacity

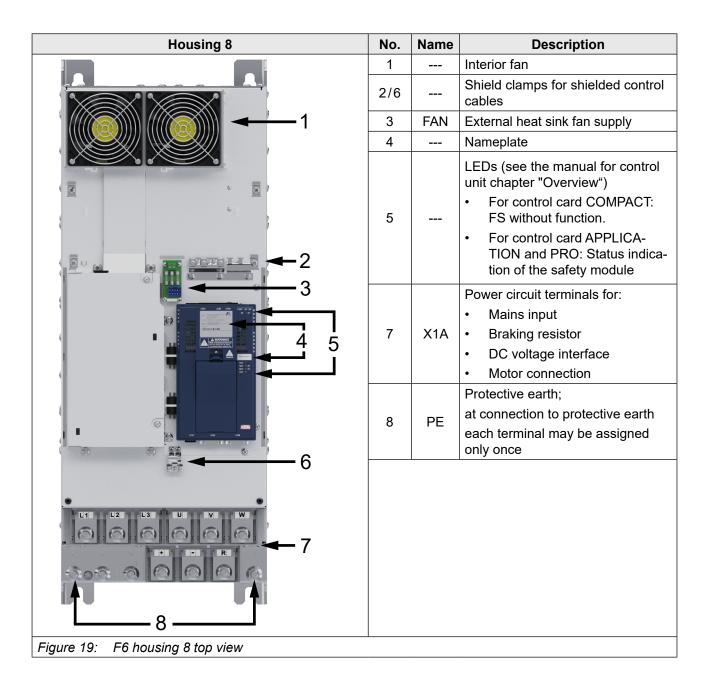
For maximum cooling capacity (volume flow), the drive controller must be mounted without clearance on a smooth, closed mounting plate.

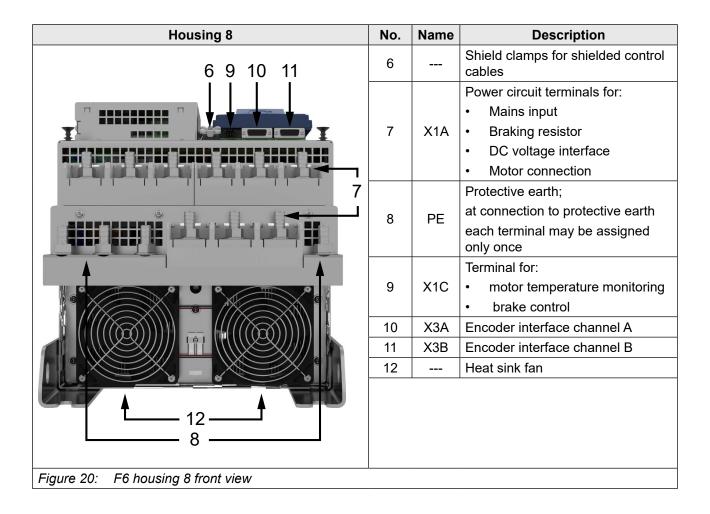
Mounting distances	Dimen- sion	Distance in mm	Distance in inch	
	Α	150	6	
ÎA E.∕	В	100	4	
	С	30	1.2	
D C	D	0	0	
	Е	0	0	
	F 1)	50	2	
F B	Distance to preceding elements in the control cabinet door.			
Figure 17: Mounting distances	L			


If construction-conditioned the control cabinet cannot be without indoor ventilation, appropriate filters must avoid suction of foreign objects.

NOTICE

Voltage flashover!


- ► Observe screw length for push-through version!
- ► Maintain an insulation distance of at least 15 mm (0.6 inch) between conductor and screw!



4 Installation and Connection

4.1 Overview of the COMBIVERT F6

OVERVIEW OF THE COMBIVERT F6

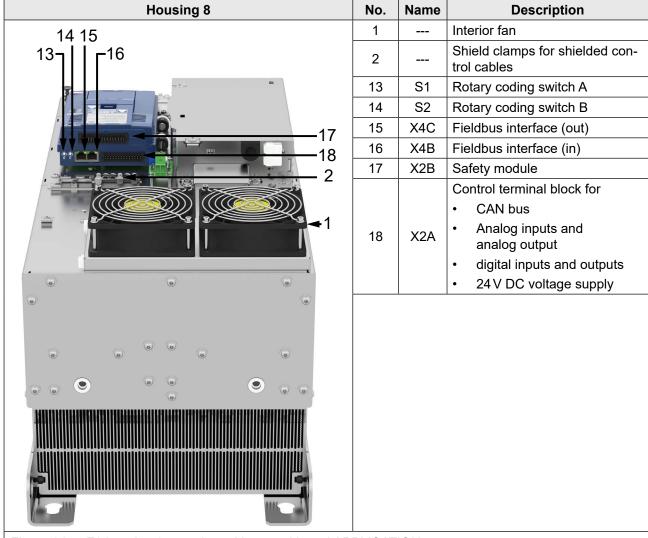


Figure 21: F6 housing 8 rear view with control board APPLICATION

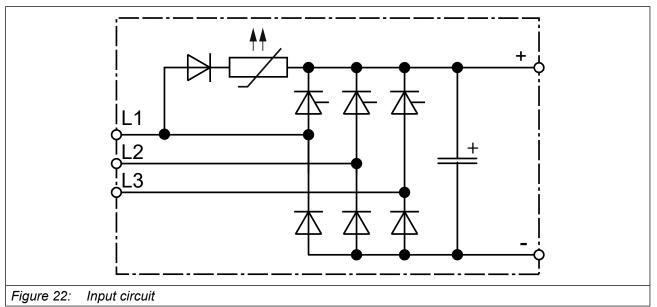
Further information can be found in the respective control board manual.

Instructions for use COMBIVERT F6 control board APPLICATION www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-a-inst-20118593_en.pdf

Instructions for use COMBIVERT F6 control board COMPACT www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-k-inst-20144795_en.pdf

Instructions for use COMBIVERT F6 control board PRO www.keb.de/fileadmin/media/Manuals/dr/ma_dr_f6-cu-p-inst-20182705_en.pdf

4.2 Connection of the power unit

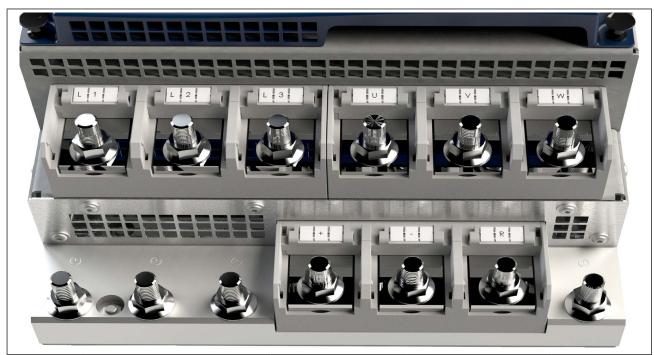

NOTICE

Destruction of the drive controller!

► Never exchange mains input and motor output!

4.2.1 Connection of the voltage supply

The COMBIVERT F6 housing 8 can be supplied by mains via terminals L1, L2 and L3.



Minimum waiting period between two switch-on procedures 5 minutes!

Cyclic switching on and off of the device leads to temporary high resistance of the resistor (PTC) in the input. After the PTC has cooled down, it can be restarted without restrictions.

4.2.1.1 Terminal block X1A for 400 V devices

Name	Function	Terminal connec- tion	Tightening torque	Max. number of conductors
L1	Mains connection			
L2				
L3	- 3-phase			
U				
V	Motor connection	12 mm stud for M12	35 Nm	2
W		crimp connectors	310 lb inch	_
+	DC terminals			
-	DC terminals			
R	Connection for braking resistor (between + and R)			
Figure 00.	Townsin at black VAA for 400 V a			

Figure 23: Terminal block X1A for 400 V devices

4.2.2 Protective earth and functional earth

Protective and functional earth must not be connected to the same terminal.

4.2.2.1 Protective earth

The protective earth (PE) serves for electrical safety particularly personal protection in error case.

A CAUTION

Electric shock due to incorrect dimensioning!

Cross-section wire to ground should be selected according to DIN IEC 60364-5-54!

Name	Function	Terminal connection	Tightening torque	Max. number of con- ductors
-	Connection for protective earth	12 mm threaded pin for M12 crimp connectors	35 Nm 310 lb inch	1
Figure 24: Connection for protective earth				

Incorrect assembly of the PE connection

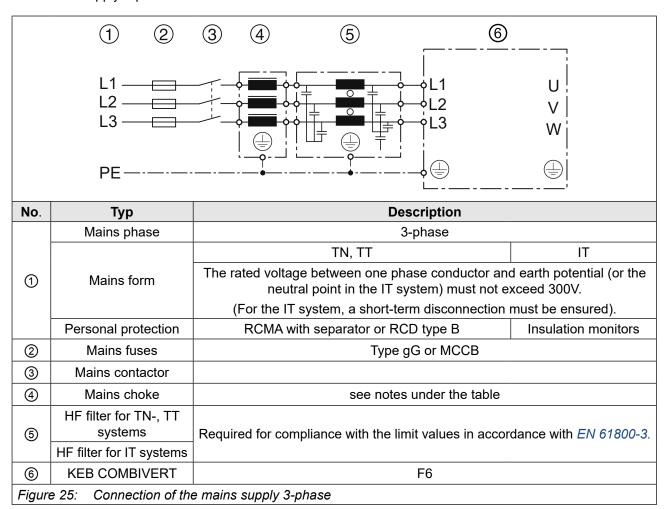
Pre-mounted M12 screws and M12 nuts with flange must be used to attach the PE tubular cable lugs.

4.2.2.2 Functional earthing

A functional earthing may also be necessary, if for EMC requirements additional potential equalization between devices or parts of the system must be available.

The use of the functional earth (FE) is not required if the frequency inverter is EMC-technically wired.

The functional earth may not be wired green/yellow!


Notes on EMC-compatible installation can be found here. www.keb.de/fileadmin/media/Manuals/emv/0000neb0000.pdf

4.2.3 AC mains connection

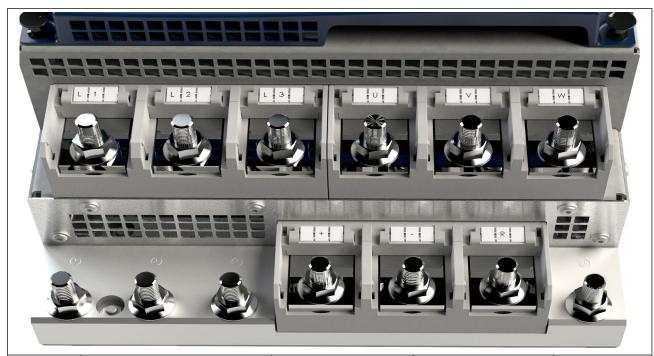
4.2.3.1 AC supply 3-phase

4.2.3.2 Mains supply cable

The conductor cross-section of the mains supply cable is determined by the following factors:

- Input current of the drive controller
- · Used cable type
- installation and ambient temperatures
- · The locally valid electrical regulations

The application engineer is responsible for the design!


CONNECTION OF THE POWER UNIT

4.2.4 DC connection

NOTICE

DC operation is only permitted after consultation with KEB!

4.2.4.1 Terminal block X1A DC connection

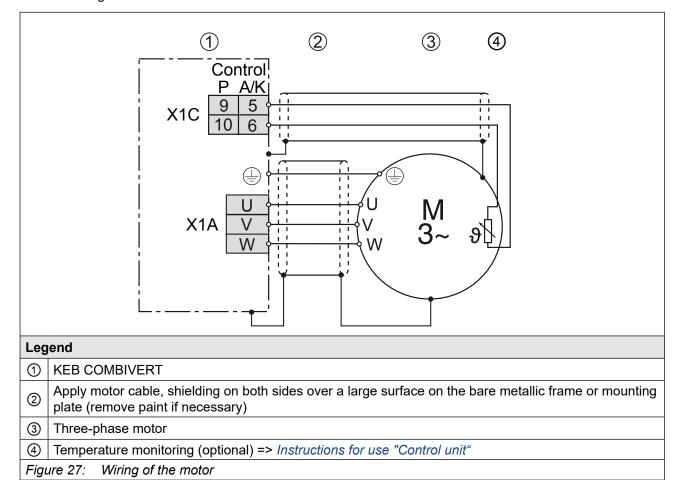
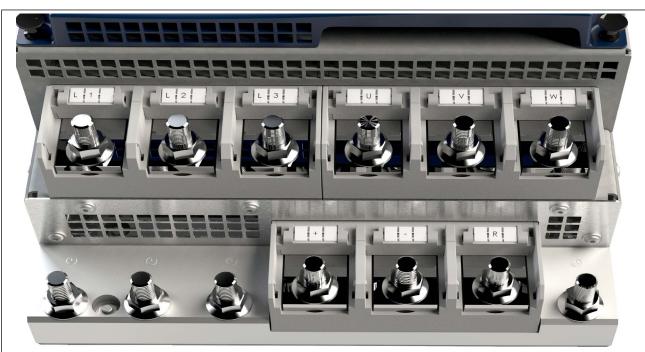

Name	Function	Terminal connection	Tightening torque	Max. number of conductors
+	DC terminals	12mm stud for M12 crimp connectors	35Nm 310 lb inch	2
Figure 00:	Townsia at blook VAA DO assures	4:		

Figure 26: Terminal block X1A DC connection

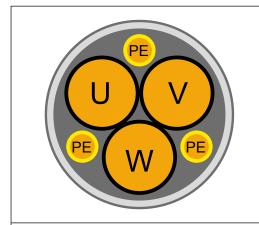

4.2.5 Connection of the motor

4.2.5.1 Wiring of the motor

CONNECTION OF THE POWER UNIT

4.2.5.2 Terminal block X1A motor connection

Name	Function	Terminal connection	Tightening torque	Max. number of conductors
U		40 4 16 1440	35 Nm	
V	Motor connection	12 mm stud for M12 crimp connectors	310 lb inch	2
W		oninp connectors	3 IO ID INCH	
Figure 28:	Terminal block X1A motor conn	pection		


Figure 28: Terminal block X1A motor connection

4.2.5.3 Selection of the motor line

The correct cabling as well as the motor line itself play an important part in case of low power in connection with long motor line lengths. Low-capacitance line (phase/phase < $65 \, \text{pF/m}$, phase/screen < $120 \, \text{pF/m}$) at the inverter output have the following effects:

- allow major motor line lengths ("4.2.5.4 Motor cable length and conducted interferences at AC supply")
- better EMC properties (reduction of the common-mode output currents to earth)

The use of shielded motor lines with symmetrical structure is required for higher motor power (from 30 kW). In these lines the protective earth conductor is tripartite and evenly arranged between the phase lines. A cable without protective earth conductor can be used if local regulations so permit. Then the protective earth conductor must be laid externally. Certain lines also permit the shield for the use as protective earth conductor. For this, observe the details of the line manufacturer!

Figure 29: Symmetrical motor line

4.2.5.4 Motor cable length and conducted interferences at AC supply

The maximum motor line length is depending on the capacity of the motor cable as well as on the EMC emitted interference. External measures must be taken here (e.g. the use of a line filter). The following information is valid for the operation under rated conditions and the use of KEB listed filters under chapter => 4.3.1 Filters and chokes!

	Max. motor cable length shielded
	according to EN 61800-3
Device	Category C2
size	Motor cable (low capacitance)
27	
28	30 m ¹⁾
29	30111 7
30	
Table 33:	Max. motor cable length

¹⁾ Larger cable lengths only permitted after consultation with KEB.

The cable length can be increased significant by using motor chokes or motor filters. KEB recommends the use of motor chokes or filters for a cable length upto 25 m.

CONNECTION OF THE POWER UNIT

4.2.5.5 Motor cable length for parallel operation of motors

The resulting motor cable length for parallel operation of motors, or parallel installation with multiple cables arises from the following formula:

Resulting motor cable length = \sum single cable length x \sqrt{Number} of motor cables

4.2.5.6 Motor cable cross-section

The motor cable cross-section is depending

- on the characteristic of the output current (e.g. harmonic content)
- on the real effective value of the motor current
- on the cable length
- on the type of the used cable
- on the ambient conditions such as bundling and temperature

4.2.5.7 Interconnection of the motor

NOTICE

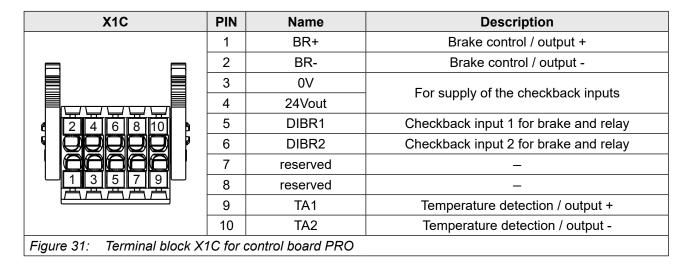
Incorrect behaviour of the motor!

► In general, the connection instructions of the motor manufacturer are always valid!

Protect motor against voltage peaks!

▶ Drive controllers switch at the output with high dv/dt. Voltage peaks that endanger the insulation system at the motor can occur especially in case of long motor cables (>15 m). A motor choke, a dv/dt-filter or sine-wave filter can be used to protect the motor with regard to the operating mode.

4.2.5.8 Connection of the temperature monitoring and brake control (X1C)

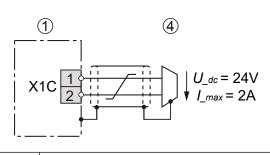

A switchable temperature evaluation is implemented in the COMBIVERT.

There are different types for the evaluation available. These are dependending on the control board => *instruction manual "control board"*.

The desired operating mode can be adjusted via software (dr33). If the evaluation is not required, it must be deactivated via software (parameter pn33 = 7) => *Programming manual*

X1C	PIN	Name	Description
	1	BR+	Brake control / output +
	2	BR-	Brake control / output -
	3	reserved	I
2 4 6	4	reserved	ı
	5	TA1	Temperature detection / output +
	6	TA2	Temperature detection / output -
135			
Figure 20. To make at the at 20.			

Figure 30: Terminal block X1C for control board APPLICATION and COMPACT


NOTICE

Malfunctions due to incorrect line or laying!

Malfunctions of the control due to capacitive or inductive coupling.

- Do not route cables from the motor temperature sensor (also shielded) together with control cables.
- ► Cables from the motor temperature sensor within the motor cables may only be used with double shielding!
- ▶ The input of the temperature detection has basic isolation.

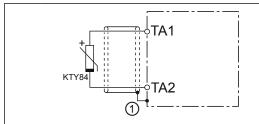
CONNECTION OF THE POWER UNIT

① COMBIVERT

4 Brake

Figure 32: Connection of the brake control

For control board APPLICATION and COMPACT.


The voltage to the control of a brake is decoupled from the internal voltage supply. The brake works only with external voltage supply.

For control board PRO

The brake can be supplied with both, internal and external voltage. Voltage tolerances and output currents vary for internal and external voltage supply.

Respect the specifications

=> instruction manual "control board"

KTY sensors are polarized semiconductors and must be operated in forward direction! To this connect the anode to TA1 and the cathode to TA2! Non-observance leads to incorrect measurements in the upper temperature range. A protection of the motor winding is then no longer guaranteed.

① Connection via shield plate (if not available, place on the mounting plate).

Figure 33: Connection of a KTY sensor

NOTICE

No protection of the motor winding in case of wrong connection.

- Operate KTY sensors in forward direction.
- ▶ KTY sensors may not be combined with other detections.

NOTE

"Basic insulation" against SELV voltage of the control. A system voltage (Phase – PE) of 300 V is defined. Consequently, the connected sensors also must have a "basic insulation" to the mains potential (e.g. motor winding)!

More information about the wiring of the temperature monitoring and the brake control are described in the respective control unit manual.

4.2.6 Connection and use of a braking resistor

A CAUTION

Fire risk by using brake resistors!

► The risk of fire can be significantly reduced by using "intrinsically safe braking resistors" or by using suitable monitoring functions / circuits.

NOTICE

Destruction of the frequency inverter if the vale has fallen below the minimum brake resistance value!

► The minimum brake resistance value must not fall below! "Overview of the 400 V devices"

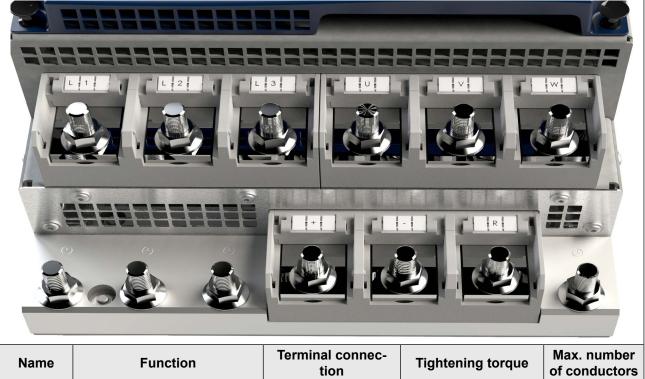
A CAUTION

Hot surfaces caused by load of the braking resistor!

Burning of the skin!

- ► Cover hot surfaces safe-to-touch.
- ▶ Before touching, check the surface.
- ▶ If necessary, attach warning signs on the system.

4.2.6.1 Installation instructions for side-mounted braking resistors



Instructions for the installation of intrinsically safe braking resistors https://www.keb.de/fileadmin/media/Manuals/dr/ma_dr_safe-braking-resistors-20106652_en.pdf Chapter "Installation instructions".

CONNECTION OF THE POWER UNIT

4.2.6.2 Terminal block X1A connection braking resistor

Name	Function	Terminal connec- tion	Tightening torque	Max. number of conductors
+	Connection for braking resis-	12 mm stud for M12	35 Nm	2
R	tor (between + and R)	crimp connectors	310 lb inch	2

Figure 34: Terminal block X1A connection braking resistor

For devices with sub-mounted braking resistors, connection of external braking resistors to terminal R is not permitted.

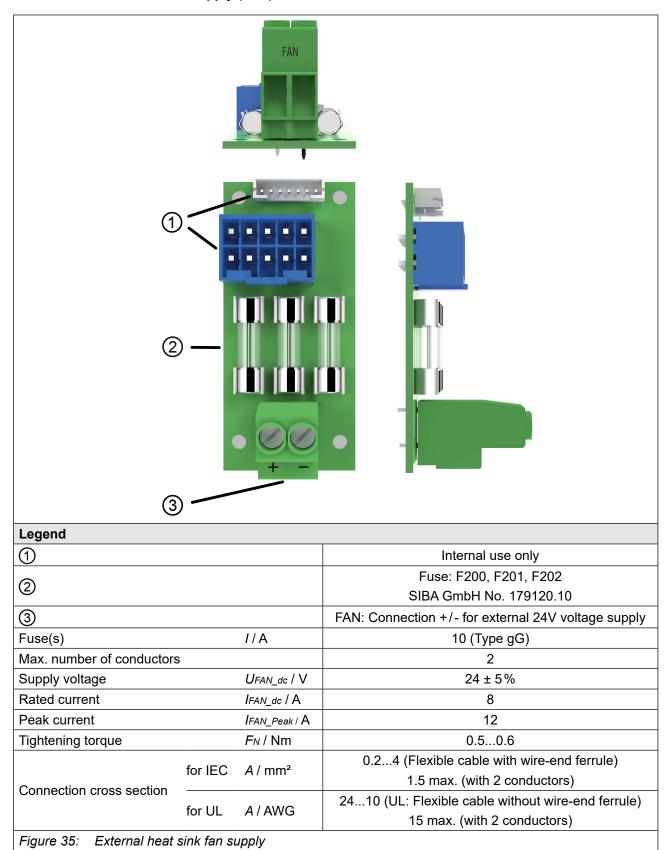
4.2.6.3 Use of non-intrinsically safe braking resistors

WARNING

Use of non-intrinsically safe braking resistors

Fire or smoke in case of overload or fault!

- ▶ Only use braking resistors with temperature sensor.
- ► Evaluate temperature sensor.
- ► Trigger a fault on the drive controller (e.g. external input).
- ► Switching off input voltage (e.g. input contactor).
- ► Connection examples for non-intrinsically safe braking resistors => *Instructions for use "Installation braking resistors"*.



Instructions for use "Installation braking resistors" www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_en.pdf

CONNECTION OF THE POWER UNIT

4.2.7 External heat sink fan supply (FAN)

4.3 Accessories

4.3.1 Filters and chokes

Voltage class	Drive controller size	HF filter	Mains choke 50 Hz / 4% Uk	
	27	• 27E6T60-3000		
		• 28E6T60-1150	27Z1B04-1000	
		• 28E4T60-1001	2721004-1000	
		• 28U5A0W-3000		
	28	• 28E6T60-1150		
		• 28E4T60-1001	28Z1B04-1000	
400 V		• 28U5A0W-3000		
	29	• 30E6T60-1150		
		• 30E4T60-1001	29Z1B04-1000	
		• 30U5A0W-3000		
	30	• 30E6T60-1150		
		• 30E4T60-1001	30Z1B04-1000	
		• 30U5A0W-3000		
Table 34: Filters and	l chokes			

The specified filters and chokes are designed for rated operation.

4.3.2 Seal for IP54-ready devices

Name	Material number	
Flat seal IP54	80F6T45-0001	
Table 35: Seal for IP54-ready devices		

4.3.3 Connections to the coolant

Name	Material number
Functional nut for 15 mm tube	0000651-FM15
Table 36: Connections to the coolant	

4.3.4 Side-mounted braking resistors

Technical data and design about non-intrinsically safe braking resistors

www.keb.de/fileadmin/media/Manuals/dr/ma_dr_braking-resistors-20116737_en.pdf

5 Certification

5.1 CE-Marking

CE marked drive controllers were developed and manufactured to comply with the regulations of the Low-Voltage Directive and EMC directive. The harmonized standards of the series *EN 61800-5-1* and *EN 61800-3* were used.

For more information about the CE Declarations of Conformity

=> 6.3 Further informations and documentation

5.2 UL certification

- In preparation -

5.3 Further informations and documentation

You find supplementary manuals and instructions for the download under www.keb.de/de/service/downloads

General instructions

- EMC and safety instructions
- Manuals for additional control boards, safety modules, fieldbus modules, etc.

Instruction and information for construction and development

- · Input fuses in accordance with UL
- Programming manual for control and power unit
- Motor configurator to select the appropriate drive converter and to create downloads for parameterizing the drive converter

Approvals and approbations

- Declaration of conformity CE
- TÜV certificate
- · FS certification

Others

- COMBIVIS, the software for comfortable parameterization of drive converters via PC (available per download)
- EPLAN drawings

6 Revision History

Version	Date	Description
00	2017-08	Creation of a prototype.
00	2018-05	Creation of the pre-series manual.
01	01 2019-01	Changes of technical data.
2019-01	Figures of the overload characteristics adapted.	
02	2020-08	Changes of technical data. Change of overload characteristics, editorial changes.
03	2021-08	Drawings, technical data updated.

NOTES

Austria | KEB Automation GmbH Ritzstraße 8 4614 Marchtrenk Austria Tel: +43 7243 53586-0 Fax: +43 7243 53586-21 E-Mail: info@keb.at Internet: www.keb.at

Benelux | KEB Automation KG
Dreef 4 - box 4 1703 Dilbeek Belgium
Tel: +32 2 447 8580
E-Mail: info.benelux@keb.de Internet: www.keb.de

Brazil | KEB South America - Regional Manager Rua Dr. Omar Pacheco Souza Riberio, 70 CEP 13569-430 Portal do Sol, São Carlos Brazil Tel: +55 16 31161294 E-Mail: roberto.arias@keb.de

Czech RepublicKEB Automation GmbHVidenska 188/119d61900 BrnoCzech RepublicTel: +420 544 212 008E-Mail: info@keb.czInternet: www.keb.cz

France | Société Française KEB SASU

Z.I. de la Croix St. Nicolas 14, rue Gustave Eiffel
94510 La Queue en Brie France

Tel: +33 149620101 Fax: +33 145767495

E-Mail: info@keb.fr Internet: www.keb.fr

Germany | Geared Motors

KEB Antriebstechnik GmbH
Wildbacher Straße 5 08289 Schneeberg Germany
Telefon +49 3772 67-0 Telefax +49 3772 67-281
Internet: www.keb-drive.de E-Mail: info@keb-drive.de

Italy | KEB Italia S.r.l. Unipersonale
Via Newton, 2 20019 Settimo Milanese (Milano) Italia
Tel: +39 02 3353531 Fax: +39 02 33500790
E-Mail: info@keb.it Internet: www.keb.it

 Japan | KEB Japan Ltd.

 15 - 16, 2 - Chome, Takanawa Minato-ku
 Tokyo 108 - 0074
 Japan

 Tel: +81 33 445-8515
 Fax: +81 33 445-8215

 E-Mail: info@keb.jp
 Internet: www.keb.jp

P. R. China | KEB Power Transmission Technology (Shanghai) Co. Ltd.
No. 435 QianPu Road Chedun Town Songjiang District
201611 Shanghai P.R. China
Tel: +86 21 37746688 Fax: +86 21 37746600
E-Mail: info@keb.cn Internet: www.keb.cn

Poland | KEB Automation KG

Tel: +48 60407727

E-Mail: roman.trinczek@keb.de Internet: www.keb.de

Republic of Korea | KEB Automation KG

Deoksan-Besttel 1132 ho Sangnam-ro 37

Seongsan-gu Changwon-si Gyeongsangnam-do Republic of Korea
Tel: +82 55 601 5505 Fax: +82 55 601 5506

E-Mail: jaeok.kim@keb.de Internet: www.keb.de

Russian Federation | KEB RUS Ltd. Lesnaya str, house 30 Dzerzhinsky MO 140091 Moscow region Russian Federation Tel: +7 495 6320217 Fax: +7 495 6320217 E-Mail: info@keb.ru Internet: www.keb.ru

Spain | KEB Automation KG
c / Mitjer, Nave 8 - Pol. Ind. LA MASIA
08798 Sant Cugat Sesgarrigues (Barcelona) Spain
Tel: +34 93 8970268 Fax: +34 93 8992035 E-Mail: vb.espana@keb.de

Switzerland | KEB Automation AGWitzbergstrasse 248330 Pfaeffikon/ZH SwitzerlandTel: +41 43 2886060Fax: +41 43 2886088E-Mail: info@keb.chInternet: www.keb.ch

United Kingdom | KEB (UK) Ltd.
5 Morris Close | Park Farm Indusrial Estate
Wellingborough, Northants, NN8 6 XF | United Kingdom
Tel: +44 1933 402220 | Fax: +44 1933 400724
E-Mail: info@keb.co.uk | Internet: www.keb.co.uk

United States | KEB America, Inc 5100 Valley Industrial Blvd. South Shakopee, MN 55379 United States Tel: +1 952 2241400 Fax: +1 952 2241499 E-Mail: info@kebamerica.com Internet: www.kebamerica.com

MORE KEB PARTNERS WORLDWIDE:

Automation with Drive

www.keb.de

KEB Automation KG Suedstrasse 38 32683 Barntrup Tel. +49 5263 401-0 E-Mail: info@keb.de